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H I G H L I G H T S

• A robust regularized extreme learning machine is proposed.

• The robustness of the proposed algorithm is proved theoretically.

• The proposed algorithm is applied to model a small-scale turbojet engine.

• The precise power control for unmanned aerial vehicles is realized.
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A B S T R A C T

In this paper, a robust extreme learning machine is proposed. In comparison with the original extreme learning
machine and the regularized extreme learning machine, this robust algorithm minimizes both the mean and
variance of modeling errors in the objective function to overcome the bias-variance dilemma. As a result, its
generalization performance and robustness are enhanced, and these merits are further proved theoretically. In
addition, this proposed algorithm can keep the same computational efficiency as the original extreme learning
machine and the regularized extreme learning machine. Then, several benchmark data sets are used to test the
effectiveness and soundness of the proposed algorithm. Finally, it is employed to model a real small-scale tur-
bojet engine. This engine is fit well. Especially, on the idle phase, where the signal-to-noise ratio is low and it is
very hard to model, the proposed algorithm performs well and its robustness is sufficiently showcased. All in all,
the proposed algorithm provides a candidate technique for modeling real systems.

1. Introduction

Single hidden layer feedforward networks (SLFNs) have been ex-
tensively and intensively investigated in the last few decades [1,2], and
a large number of algorithms about them have been presented. In
SLFNs, one vital problem is how to determine the weights in the net-
work. To address this problem, the gradient descent methods are
commonly used to optimize the network weights, such as error back-
propagation algorithm [3], Levenberg-Marquardt algorithm [4,5], and
neuron by neuron algorithm [6]. However, those algorithms usually
suffer from the risk of slow convergence or/and local minimum. Re-
cently, a promising and high-efficiency training tool for SLFN was
proposed, i.e., extreme learning machine (ELM) [7,8]. ELM has two
remarkable features [9]: (1) Its input weights and the biases of the
hidden nodes are randomly generated, and the output weights between
the hidden layer and output layer are analytically calculated by solving
a linear system. Such improvement greatly alleviates the computational

burden of weight tuning caused by the widely used gradient descent
methods and thus guarantees the fast learning speed of ELM. (2) ELM
aims to minimize both training errors and the norm of output weights,
which leads to ELM to generalize well on the unseen testing data.
Generally speaking, ELM spends much less time on training and tends to
achieve much better generalization performance. Further, ELM theories
and philosophy show that some earlier learning theories such as ridge
regression theory [10], Bartlett’s neural network generalization per-
formance theory [11] and SVM’s maximal margin [12–14] are actually
consistent in machine learning [15,16]. Due to its powerful and ex-
cellent capabilities, ELM is widely adopted in the classification and
regression problems.

In the implementation of ELM, it is found that the generalization
performance of ELM is not sensitive to the number of the hidden nodes
(#HN) and good performance can be reached as long as #HN is large
enough [15]. However, too many random hidden nodes may deterio-
rate the condition number of the hidden layer output matrix, thus
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impairing the generalization performance of ELM. In an effort to im-
prove its performance, the Tikhonov’s method [17] was used to reg-
ularize the original ELM, that is, a regularization term was added to the
objective function to control the model complexity, thus yielding the
regularized ELM (RELM) [18]. From the viewpoint of numerical ana-
lysis, RELM can boost the performance with the trick of improving the
condition number of the hidden layer output matrix [19]. The original
ELM is a special case of RELM when the regularization parameter
equals infinity.

In both ELM and RELM, the least squares loss function is adopted.
As thus, they are sensitive to outliers and non-Gaussian noise, which
may result in an unsatisfactory modeling performance in an environ-
ment with noise [20]. And, in many real-life applications, practical data
usually contain the presence of different distributions of noise because
of sampling errors, modeling errors, measurement errors, and operation
errors. Hence, their performance may not be so satisfactory when ELM
and RELM are used to model these practical systems. To reduce the
influence of outliers and noise, some actions of boosting the robustness
of ELM or RELM can be taken. Loosely speaking, two strategies can be
taken: (1) The weight approach: each training point is assigned with a
different weight according to some principle. Generally, a smaller error
training point is endowed with a large weight, and a larger error
training one with a small weight. For example, in [18,21], this principle
is followed, and the weight is determined with the modeling error. In
this family of algorithms, the mathematical model usually needs to be
solved many times. Thus, they need more training time. (2) The alter-
native loss function: the least squares loss function is replaced with a
robust one. For instance, the ℓ2-norm loss function is replaced with the
ℓ0-norm or ℓ1-norm loss function [22]. However, this will lead to the
result that the optimization on the mathematical model becomes dif-
ficult, that is, there are no sophisticated tools to solve the optimization
problem. All in all, although the two strategies aforementioned can
mitigate the influence of outliers and noise in some way, they will bring
about other disadvantages. In this paper, we propose a novel robust
machine learning algorithm, which not only overcomes those draw-
backs but also enhances the generalization performance of RELM and
boosts its robustness. Our main contributions include:

(1) A novel robust RELM (RRELM) is proposed, which is an extension of
RELM. In other words, RELM is a special case of RRELM. As for this
point, it can be proved. In RRELM, its objective function minimizes
both mean and variance of modeling errors. In doing so, on one
hand, the smaller error training points are endowed with large
weights, and the larger error training ones with small weights.
Thus, the robustness is boosted and the generalization performance
is improved. On the other hand, the property of the ℓ2-norm loss
function is unchanged, which signifies the same high-efficiency
computation as that in RELM.

(2) Several benchmark data sets are utilized to test the effectiveness
and soundness of the proposed RRELM. When RRELM is employed
to model a small-scale turbojet engine, we will find that RRELM can
obtain better generalization performance than RELM and ELM.
Especially in those scenarios of small thrust (the idle), where the
signal-to-noise ratio (SNR) is small and it is more difficult to model
this engine system, it is found that RRELM obviously dominates
RELM and ELM with respect to the generalization performance and
robustness.

The rest of this paper is organized as follows. Sections 2 and 3
briefly introduce ELM, and RELM, respectively. In Section 4, the pro-
posed RRELM is elaborated on. Firstly, its motivation is introduced, and
then its dual and primal solutions are given. Finally, its performance is
analyzed. In Section 5, several benchmark data sets are used to test the
effectiveness of the proposed RRELM, and some viewpoints are ex-
perimentally confirmed. In Section 6, ELM, RELM, and RRELM are
employed to model a small-scale turbojet engine, and their modeling

results are discussed. In the last section, conclusions follow.

2. ELM

An unknown nonlinear system can be described as

=y f x( ) (1)

where x and y denote the input and output of the system, respectively,
and f (·) represents this unknown nonlinear system. This unknown
system can be approximated with the ELM model:
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where h (·) is the activation function, ai and bi are the randomly gen-
erated parameters of hidden nodes, θi is the weight vector connecting
the ith hidden node to the output nodes. Considering a set of training
data D = =x y{( , )}i i i
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is the target vector, ELM lets the network outputs equal the targets with
zero errors, so the following equation is obtained [7,8]:
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is the so-called hidden nodes output matrix, = …⊤ ⊤ ⊤θ θΘ [ , , ]1 #HN ,
= ⋯⊤ ⊤ ⊤Y y y[ , , ]N1 . Getting the solution of (3) in the least square sense is

equivalent to solving the following optimal problem
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where ‖·‖F represents the Frobenius norm, = …⊤ ⊤ ⊤E e e[ , , ]N1 is the mod-
eling error matrix. The minimal norm least square solution of (5) is

= H YΘELM † (6)

where H † is the Moore-Penrose generalized inverse of matrix H . When
⊤H H is nonsingular, = ⊤ − ⊤H H H H( )† 1 , or when ⊤HH is nonsingular,

= ⊤ ⊤ −H H HH( )† 1. The prediction for a new input x with the ELM
model is
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3. RELM

The mathematical model of RELM [18] is described as:
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where R∈ +C is the regularization parameter. The optimal solution to

Table 1
Specifications of benchmark data sets.

Data sets #Training #Testing #Inputs #Outputs

Boston housing 304 202 13 1
Energy efficiency 461 307 8 2

Concrete 603 402 8 1
Sml2010 2482 1655 16 2
Parkinsons 3525 2350 18 2

Notes: #Training represents the number of training points, #Testing represents the
number of testing points, #Inputs represents the number of input attributes, #Outputs
represents the number of output targets.
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