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H I G H L I G H T S

• This study quantitatively estimated the environmental benefits of bike sharing.

• Big data techniques were applied to analyse the impacts from a spatiotemporal perspective.

• Bike sharing in Shanghai saved 8,358 tonnes of petrol and decreased CO2 emissions by 25,240 tonnes in 2016.
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A B S T R A C T

Bike sharing is a new form of transport and is becoming increasingly popular in cities around the world. This
study aims to quantitatively estimate the environmental benefits of bike sharing. Using big data techniques, we
estimate the impacts of bike sharing on energy use and carbon dioxide (CO2) and nitrogen oxide (NOX) emissions
in Shanghai from a spatiotemporal perspective. In 2016, bike sharing in Shanghai saved 8358 tonnes of petrol
and decreased CO2 and NOX emissions by 25,240 and 64 tonnes, respectively. From a spatial perspective, en-
vironmental benefits are much higher in more developed districts in Shanghai where population density is
usually higher. From a temporal perspective, there are obvious morning and evening peaks of the environmental
benefits of bike sharing, and evening peaks are higher than morning peaks. Bike sharing has great potential to
reduce energy consumption and emissions based on its rapid development.

1. Introduction

Although bike sharing is a relatively new form of transport in urban
areas, it has become increasingly popular in towns and cities around the
world in recent years [1]. Bike sharing is an oriented production service
system (PSS) where ownership of the bike is retained by the provider,
who sells the functions of the bike, via modified distribution and pay-
ment systems [2–4]. This popularity can be mainly explained by the
fact that bike-sharing programmes are associated with various social,
environmental, and economic benefits, such as a decrease in carbon
dioxide (CO2) emissions, a reduction in various diseases (e.g., diabetes
and obesity), and a decline in traffic congestion and noise pollution
through the provision of alternatives to auto-commuting and an in-
crease in public transit use [5–7].

The existing bike-sharing literature can be mainly grouped into two
domains [8]. The first domain includes mathematical models that focus
on rebalancing. For example, taking London's Barclays Cycle Hire
programme as a study case, Pfrommer et al. [9] considered the efficient
operation of shared mobility systems via the combination of intelligent

routing decisions for staff-based vehicle redistribution and real-time
price incentives for customers. Forma et al. [10] proposed a 3-step
mathematical programming-based heuristic method for the static re-
positioning problem. In addition, Pal and Zhang [11] presented a novel
mixed integer linear programme for solving real-life large-scale static
rebalancing problems. The studies in the second domain include those
that characterise bike sharing through various analyses. For example,
Wood et al. [12] visualised the dynamics of London’s bike-sharing
scheme using flow maps, and Zaltz Austwick et al. [13] employed vi-
sualisation, descriptive statistics and spatial and network analysis tools
to explore usage in five cities around the world. Beecham et al. [14]
proposed a new technique for classifying commuting behaviours that
involves various spatial analysis algorithms and visual analytics tech-
niques. In addition, Caulfield et al. [5] examined usage patterns of a
bike-sharing programme in Cork, a medium-sized city in Ireland. This
research provides insights into the dynamics of a relatively small bike-
sharing scheme and presents results on how bike sharing has offered
citizens a new transport alternative. Some researchers have a particular
interest in understanding the factors that affect bike sharing (such as
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the built environment, weather, and socio-economic demographics)
[15–17]. Most of the existing studies focus on the analysis of an in-
dividual city, such as London (the UK) [9,12,18], Washington DC (the
United States) [19,20], Toronto and Montreal (Canada) [21,22], and
Hangzhou and Zhongshan (China) [23–25]. However, some studies
have performed a comparative analysis of the bike-sharing systems in
different cities. These comparisons are based on numerous aspects, such
as the number of subscribers/stations/bikes, modal share changes,
connectivity, and flows [1,13,26].

However, despite acknowledgement that bike sharing results in
various environmental benefits, no studies have directly estimated the
environmental benefits of bike sharing. A key contribution of this
paper, therefore, is to fill this research gap using a big data technique to
quantitatively estimate the impacts of bike sharing on energy savings
and emission reductions.

Since the introduction of the first bike-sharing programme in the
1960s, bike-sharing service has evolved quickly over a half century
[16,27,28]. We are now facing a new generation of bike sharing, re-
ferred to as the dockless (or station-less) bike-sharing service, which is
currently emerging in China and expanding around the world. Before
the existence of the dockless bike-sharing service, bikes needed to be
docked at stations, whereas in this emerging service, bikes can be un-
locked and paid for using a smartphone and can be picked up and left
any authorised parking area at users’ convenience. The first such ser-
vice was launched in June 2015 by the start-up company ofo. According
to the Research Report on Bike-sharing Employment [29], released in
September 2017 by China’s National Information Centre, the company
now has approximately 8 million yellow-framed bikes in more than 170
cities in 9 countries. It has approximately 25 million orders per day and
now has 3 billion cumulative orders. The Research Report also shows
that at present, there are approximately 16 million dockless bikes in
China and 50 million orders per day. In addition, the rapid development
of this dockless bike-sharing service has created 100,000 new jobs in
China. In particular, 70,000 new jobs were created in the first half of
2017. Because this bike-sharing service is very new, we could only find
one existing study: Bao et al. [30] proposed a data-driven approach to
develop bike lane construction plans based on bike trip data, provided
by Mobike, ofo’s main competitor and the world’s largest dockless bike-
sharing company.

In this paper, we quantitatively evaluate environmental benefits of
bike sharing using a large-scale bike-sharing dataset provided by the
company Mobike. We estimate the impacts of bike sharing on energy
use and CO2 and NOX emissions in Shanghai in 2016. Using a big data
technique, we discuss the environmental benefits from a spatiotemporal
perspective.

2. Data and methods

2.1. Study area and data

With an area of 6341 km2 and a population of 24.26 million,
Shanghai is one of the largest cities in the world and China’s economic
centre (Fig. 1a). Shanghai’s GDP in 2016 was 2.8 trillion Yuan, ac-
counting for 3.6% of China’s total GDP [31]. Huangpu, Putuo, Hon-
gkou, Jingan, Changning, Yangpu, and Xuhui districts are regarded as
old central area among Shanghai’s sixteen districts. Lujiazui, Shanghai’s
CBD (central business district), is located in Pudong New District and
adjacent to old central area. Shanghai’s Circle Road is a high-speed road
surrounding the most part of Shanghai City (excluding Chongming
district). As of July 2017, Shanghai had 1.5 million dockless bikes,
making it the largest bike-sharing market in the world [32].

The data used here were obtained from Mobike, which provides ‘a
bike-sharing service to fulfil urban short trips - anytime, to any au-
thorised parking destination - by combining innovation and today’s IoT
(Internet of Things) technology’ [33]. As of March 2017, Mobike had
more than 4 million red-framed bikes in nearly 80 cities worldwide. The

company receives approximately 20 million orders per day, accounting
for 56.56% of the total market, making it the largest dockless bike-
sharing company in the world [34]. The dataset, provided by Mobike,
contains approximately 56.62% of total trip orders in August 2016. In
it, there were 1,023,603 orders made by 306,936 users for 17,688
bikes. Each order contains the basic trip information, namely, the order
identification (ID), user ID, bike ID, start time, the longitude and lati-
tude of the origin, end time, the longitude and latitude of the destina-
tion, and track. Each attribute is a column in the dataset. The attribute
track contains the longitudes and latitudes of locations between the
start and end locations. For an N-location track, the format of the
column track is ‘longitude1, latitude1# longitude2, latitude2#….…
longitudeN, latitudeN#’. It should be noted that all bikes are GPS
tracked. Therefore, a bike trip can be regarded as a collection of
chronologically ordered GPS points, for example, p1→ p2 → ··· → pn,
where each point consists of a geospatial coordinate set and a time
stamp such as p = (x, y, t) [35,36]. However, due to privacy issues, the
tracks in the dataset were preprocessed by Mobike. Each track contains
only a collection of chronologically unordered spatial locations with no
temporal information, which means we do not know users’ real trip
routes. In Section 2.2, we propose a method to solve this issue.

The spatial distribution of the origins and destinations of all bike
trips (shown in Fig. 1b) was created using the point density method in
ArcGIS, which is developed by ESRI (Environmental Systems Research
Institute) and is the world’s most widely used commercial GIS (Geo-
graphic Information System) software. Most trips occurred in Shang-
hai’s old central area, especially in Yangpu, Hongkou, Jingan, and
Huangpu districts. Almost all bikes were used inside Shanghai’s Circle
Road.

2.2. Trip distance estimation

To estimate environmental benefits, we first need to estimate the
distances of the bike trips. The bike-sharing data from traditional dock-
based services only contain the longitudes and latitudes of the origin
and destination stations. Consequently, the trips have to be represented
as a straight line between the origins and destinations, and the trip
distances are calculated using a Euclidean distance between the origins
and destinations. Considering the bike-sharing data used here also
contain the spatial information of the origin and destination locations,
we can also calculate the trip distance using a Euclidean distance be-
tween the origin and destination. However, this calculation method will
underestimate the trip distance. To estimate travel distance more ac-
curately, we propose a method to estimate the trip distances by utilising
the track information in our dataset.

Assume a chronologically unordered trip Tu can be represented
using a collection of chronologically unordered n locations …l l l{ , , , }n1 2 . l1
and ln are the trip’s origin and destination, respectively. li (1 < i < n)
is the spatial location between l1 and ln for tripTu. The following method
is used to retrieve chronologically ordered trip TO from trip Tu. TO is
initially set as {}.

1 Append l1 to TO, remove l1 from Tu, and set =l l1;
2 Find l’s closest location lc from Tu;
3 Append lc to TO and remove lc from Tu;
4 If =l lc n, TO is the final chronologically ordered trip; however, if

≠l lc n, set =l lc, and repeat Steps 2–4.
After retrieving the chronologically ordered trip, we can easily
calculate its distance by summing all the distances between the
various locations.

2.3. Estimation of vehicle fuels and emissions

We assess the overall energy consumption and environmental im-
pacts associated with all stages of fuels [37,38]. The cycle of vehicle
fuels can be divided into two stages: well-to-tank and tank-to-wheels. In
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