Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Biogas partial oxidation in a heat recirculation reactor for syngas production and $\rm CO_2$ utilization

AppliedEnergy

Wei-Hsin Chen^{a,b,*}, Shih-Cheng Lin^a

^a Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
^b Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan

HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- Landfill, sewage and farm biogases are taken into consideration.
- The reactor with heat recovery can substantially enhance the CH₄ conversion.
- The maximum CO₂ conversion and syngas yield are 31.12% and 2.80 mol/(mol CH₄), respectively.
- The reactor can efficiently achieve syngas production and CO₂ utilization from biogas.

Swiss-roll reactor

ARTICLE INFO

Keywords: Biogas Catalytic partial oxidation of methane (CPOM) Numerical simulation CO₂ utilization Syngas and H₂ yields Swiss-roll reactor

ABSTRACT

Carbon dioxide and methane are two most important gases causing global warming; they are also the most crucial constituents in biogas. To efficiently convert the two greenhouse gases from biogas into synthesis gas (or syngas), the catalytic partial oxidation of methane (CPOM) triggered by a rhodium-based (Rh-based) catalyst in a spiral Swiss-roll reactor is studied. Three different biogases, including landfill, sewage, and farm biogases, are taken into consideration and the O_2 -to-CH₄ (O_2/CH_4) molar ratio is between 0.6 and 0.7. It suggests that the reactor with heat recovery can substantially enhance the CH₄ conversion when compared with that without heat recirculation, and almost all CH₄ in the three biogases is converted. On account of certain amount of CO_2 contained in the biogases, the role played by dry reforming on CPOM is beyond those played by methane combustion and steam reforming. Within the investigated range of O_2/CH_4 ratio, the maximum CO₂ conversion is 31.12%. The higher the CH₄ concentration and the lower the CO₂ one in a biogas, the better the H₂ and CO selectivity. The highest syngas yield is 2.80 mol/(mol CH₄), accounting for around 93% of theoretical result. Overall, the CH₄ conversion Ha 2/CO ratio in the product gas are higher than other studies, revealing that the excess enthalpy reactor is a promising device to simultaneously achieve syngas production and CO₂ utilization from biogas in industry.

https://doi.org/10.1016/j.apenergy.2018.02.123

^{*} Corresponding author at: Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan. *E-mail addresses:* weihsinchen@gmail.com, chenwh@mail.ncku.edu.tw (W.-H. Chen).

Received 1 May 2017; Received in revised form 16 February 2018; Accepted 17 February 2018 0306-2619/ © 2018 Elsevier Ltd. All rights reserved.

Nom	enclature	Subscript		
a b F_i ΔH^0 R_i	starting point distance of curve (cm) mole fraction change of total enthalpy on standard state (kJ mol ⁻¹) reaction rate of species i (kmol $m^{-3}s^{-1}$)	CH ₄ CO CO ₂ DR H ₂ O	methane carbon mon carbon diox dry reformin water	
V	volume (m ³)	in MC	inlet methane co	
Greek letter		Out SR	outlet steam reform	
θ	radian			

1. Introduction

Nowadays global warming is an issue that is of considerable concern, ascribing to the significant increase in the emissions of anthropogenic greenhouse gases (GHGs) such as carbon dioxide, methane, nitrous oxide, and fluorinated gases. Currently CO_2 accounts for the biggest share of anthropogenic GHG emissions, mainly generated from fossil fuel combustion [1]. The CH₄ concentration in the atmosphere is much lower than CO_2 ; nevertheless, its global warming potential (GWP) is around 25 folds (based on 100 years) of that of CO_2 [2]. For this reason, CH₄ also plays a crucial role in deteriorating the atmospheric greenhouse effect. In the atmosphere, part of the anthropogenic CO_2 and CH₄ emissions are due to the formation and release of biogas.

Biogas is the gas evolved from a process termed anaerobic digestion [3]. Anaerobic digestion is a biological process in which organic compounds are degraded into simple substances by microorganisms living in an environment lack of oxygen [3–6]. Accordingly, anaerobic digestion is a useful route for the transformation of waste materials into energy sources through the treatments of various organic wastes in some sites or facilities such as landfills, sewage digesters, and farm biogas plants. Wastes from these facilities are hazardous if they are not managed suitably and treated correctly. The prime and minor components of biogases from the aforementioned facilities are summarized in Table 1 [7–17].

Biogas has been considered as a renewable energy source [18] which is mostly composed of CH_4 and CO_2 ; other trace gases such as ammonia, hydrogen sulfide, hydrogen, carbon monoxide, oxygen, and nitrogen may also be included [19–21]. Biogas can be burned directly for heat and power generation after it is treated [8]. To refine biogas

Table 1

A list of composition of biogas from different sources.

Subscript	
CH4	methane
CO	carbon monoxide
CO2	carbon dioxide
DR	dry reforming
H ₂ O	water
in	inlet
MC	methane combustion
Out	outlet
SR	steam reforming

into gaseous fuel or hydrogen-rich gas, up to now a variety of thermochemical processes such as steam reforming (SR) [22–24], dry (or CO₂) reforming (DR) [25,26], partial oxidation (POX) [27], autothermal reforming (ATR) [28,29], and tri-reforming (TR) [30,31] have been practiced, as shown in Table 2.

In SR, on account of the addition of steam in the feedstock, the chemical reaction has a higher H_2 yield when compared with other reactions [24]. The development of DR is receiving growing attention in recent years in that CO₂ is used as a feedstock for CH₄ reforming, thereby simultaneously reaching the goals of syngas production and CO₂ utilization [32]. Seeing that CO₂ is reduced to CO in DR, it leads to a higher CO yield [33]. Both the SR and DR pertain to endothermic reactions so that additional heat is required to drive syngas production. In POX, CH₄ reacts with insufficient oxygen, normally under the aid of catalysts [34]. Unlike SR and DR, POX of CH₄ inherently belongs to an exothermic reaction. ATR combines both the SR and POX, and CH₄ reforming proceeds under the control of oxygen supply for giving a mildly exothermic reaction [35]. As for TR, it integrates SR, DR, and POX of CH₄ in a reactor [30,31].

Among the aforementioned routes, catalytic partial oxidation of methane (CPOM) is an advanced option inasmuch as it has a number of advantages over the other reactions. CPOM pertains to a slightly exothermic reaction in nature and is expressed as

$$CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2, \quad \Delta H^0 = -36 \text{ kJ mol}^{-1}$$
 (1)

This chemical reaction, with the aid of catalysts, can thus proceed fast and be triggered autothermally with high syngas selectivity [36]. The produced syngas is featured by the H_2 /CO ratio of approximately 2

Source	CH4 (vol%)	CO ₂ (vol%)	N ₂ (vol%)	O ₂ (vol%)	H ₂ (vol%)	H ₂ S (ppm)	NH ₃ (ppm)	Benzene (mg m ⁻³)	Toluene (mg m ⁻³)	Siloxane $(mg g^{-1})$	Reference
WWTP	55.1-57.8	28.5-32.5	7.5–12	1.8-2.9	-	104–1852	-	-	-	-	[7]
POME biogas	60-70	30-40	< 1	-	-	10-2000	-	-	-	-	[8]
Sewage plant	55-65	35-45	< 1	-	-	10-40	-	-	-	-	[8]
Landfill biogas	45-55	30-40	5–15	-	-	50-300	-	-	-	-	[8]
Landfill biogas	30-65	25-47	< 1–17	< 1–3	0–3	30-500	0–5	-	-	< 0.3–36	[9]
Landfill biogas	47-57	37-41	< 1–17	< 1	-	36-115	-	0.6-2.3	1.7-5.1	-	[10]
Sewage digester	61–65	36–38	< 2	< 1	-	-	-	0.1-0.3	2.8-11.8	-	[10]
Farm biogas plant	55-58	37–38	< 1–2	< 1	-	32-169	-	0.7-1.3	0.2-0.7	-	[10]
Landfill biogas	59.4-67.9	29.9-38.6	-	-	-	15.1-427.5	-	21.7-35.6	83.3-171.6	-	[11]
Landfill biogas	37-62	24–29	-	< 1	-	-	-	< 0.1–7	10-287	-	[12]
Landfill biogas	55.6	37.14	-	0.99	-	-	-	3.0	55.7	-	[13]
Landfill biogas	44	40.1	13.2	2.6	-	250	-	-	65.9	-	[14]
Sewage digester	57.8	38.6	3.7	0	-	62.9	-	-	-	-	[15]
Sewage digester	62.6	37.4	-	-	-	-	-	-	-	-	[16]
Sewage digester	58	33.9	8.1	0	-	24.1	-	-	-	-	[17]
	30–70	24–50	1–17	0–2.9	0–3	10-2000	0–5	0.1–35.6	0.2–287	0.3–36	

WWTP: waste water treatment plant; POME: palm oil mill effluent

Download English Version:

https://daneshyari.com/en/article/6680435

Download Persian Version:

https://daneshyari.com/article/6680435

Daneshyari.com