
Experimental and computational study of scalar modes in a periodic
laminar flow

Ozge Baskan a, *, Michel F.M. Speetjens b, Guy Metcalfe c, Herman J.H. Clercx a

a Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b Energy Technology Laboratory, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The
Netherlands
c CommonWealth Scientific and Industrial Research Organisation, VIC 3190 Melbourne, Australia

a r t i c l e i n f o

Article history:
Received 30 June 2014
Received in revised form
21 March 2015
Accepted 21 April 2015
Available online

Keywords:
Scalar transport
Dominant eigenmode
Time-periodic laminar flow

a b s t r a c t

Scalar fields can evolve complex coherent structures under the action of periodic laminar flows. This
comes about from the competition between chaotic advection working to create structure at ever finer
length scales and diffusion working to eliminate fine scale structure. Recently analysis of this competition
in terms of spectra of eigenfunctions of the advectionediffusion equation (ADE) has proven fruitful
because these spectra contain both fundamental information about how mixing processes create
emergent Lagrangian coherent structure and also clues about how to optimize flows for heat and mass
transfer processes in industry. While theoretical and computational studies of ADE spectra exist for
several flows, experiments, to date, have focused either solely on the asymptotic state or on highly
idealized flows. Here we show a coupled experimental and computational study of the spectrum for the
scalar evolution of a model of an industrially relevant viscous flow. The main results are the methods
employed in this study corroborate the eigenmode approach and the outcomes of different methods
agree well with each other. Furthermore, this study employs a Lagrangian formalism for thermal analysis
of convective heat transfer in the representative geometry to determine the impact of the fluid motion in
the thermal homogenization process. The experimental/numerical methods and tools used in the current
study are promising for further qualitative parameter studies of the mixing/heat transfer characteristics
of many inline mixers and heat exchangers.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Classification of industrial heat transfer processes with respect
to their ultimate goals admits the application of goal-oriented
methods for the investigation of thermal phenomena. In litera-
ture these processes are analyzed in two groups: rapid thermal
homogenization processes and heat transfer processes with high
transfer rates in inhomogeneous directions [1]. Examples of ther-
mal homogenization processes are the production of foods, poly-
mers, steel and glass whereas heat treatment of certain polymers is
an example for the latter class of processing.

Thermal homogenization is mainly the evolution of the tem-
perature field from its non-uniform initial state towards the final
homogeneous state where the evolution to the final state is

governed by the balance between advection and diffusion.
Advective-diffusive transport of passive scalars in both time-
periodic and spatially-periodic flow fields have been studied
extensively [2e9] since the pioneering work of Pierrehumbert on
’strange eigenmodes' [10]dperiodic modes with highly complex
spatial structure in the limit of zero-diffusivity. These studies are
mainly focused on the decomposition of an advecting-diffusing
scalar field into its spatial and temporal components: spatial pat-
terns are persistent (and repeating in the case of a time-periodic
flow field), whereas temporal evolution is the exponential decay
of intensities from a non-uniform initial state with high variance
toward a fully uniform state (with zero variance). The most-
persistent spatial patterns governing the asymptotic scalar trans-
port, so-called ’dominant eigenmodes', which in the limit of arbi-
trarily small diffusivity coincide with the ’strange eigenmodes', are
the slowest decaying eigenmodes of the advectionediffusion
operator and can be found by the decomposition of the linear
operator into its eigenfunctioneeigenvalue pairs without the* Corresponding author.
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necessity of solving the full advectionediffusion equation (ADE). In
the case of an experimental approach, however, the information at
hand is the data sequence rather than a mathematical model. Thus,
a data processing method capable of capturing the dynamics is
necessary to determine dominant eigenmodes and corresponding
decay rates of the experimentally acquired time-resolved scalar
fields. The dynamic mode decomposition (DMD) is a technique that
extracts dynamic information by decomposing the data set into
temporal and spatial components such that eachmode corresponds
to a complex-valued eigenvalue [11,12]. In the present work, the
DMDmethod is employed to determine the eigenmodes and decay
rates of both experimentally and numerically acquired scalar fields
derived from time-periodic advection.

In contrast, heat transfer processes which necessitate high
transfer rates in preferred directions require a Lagrangian approach
rather than the use of traditional heat transfer analysis methods
based on integrated quantities or empirical correlations. Such an
approach enables in-depth analysis of the thermal topology of the
heat transfer process and, in turn, optimization of thermal

transport routes. The Lagrangian formalism introduced in the work
by Speetjens [13] provides a generalized Lagrangian framework for
the analysis of heat transfer inwhich the impact of the fluid motion
on the scalar distribution is determined. In this study, the
formalism is demonstrated for the temperature field in a repre-
sentative industrial mixer/heat exchanger, however, it can be
applied to any advective-diffusive scalar field. The formalism is also
combined with the eigenmode analysis to show that two groups of
processes (rapid thermal homogenization processes and heat
transfer processes with high transfer rates in inhomogeneous di-
rections) can be analyzed by the same spectral methods.

The current study adopts the Rotated Arc Mixer (RAM) [14] as
the representative configuration for in-depth analysis of advective-
diffusive transport of scalars in realistic inline mixers. The RAM
(Fig. 1) consists of two concentric cylinders; a stationary inner
cylinder with consecutive windows that are offset in angular di-
rection and an outer rotating cylinder that induces a transverse
flow via viscous drag at the windows as the flow progresses axially
with a constant flow rate. A tubular segment bearing a window is

Nomenclature

A mapping matrix
A area, m2

C scalar field
c scalar field in discrete partitions
C

0
convective scalar field

~C conductive scalar field
D domain
d diameter, m
Ek kinetic energy
F generated/dissipated internal energy
h depth, m
H k Floquet modes of L 2
k thermal conductivity, W/(mK)
L aperture length, m
L 2 advectionediffusion operator
m, p integers satisfying Q/2p ¼ m/p
P pressure
Pe P�eclet number
Q heat transfer rate, W
Q′ net convective flux
q total conductive heat flux
q′ conductive component of Q′

qc convective component of Q′

R radius, m
Re Reynolds number
Sr Strouhal number
St Stokes number
T period of motion, pt
~T dimensionless period
T* reference time scale, s
T1 analytical solution of 2D axisymmetric heat equation,

K
T2 analytical solution of 1D heat equation, K
Ta typical flow (advection) time scale, s
Tf fluid particle-wall contact period
Tp typical response time of particles, s
Ts forcing period per motion step, s
Tn viscous time scale, s
t,t* time

U characteristic velocity, m/s
u velocity vector
u* velocity field with temperatureedependent material

properties
x position vector
a material (or thermal) diffusivity, m2/s
G boundary of D
gk expansion coefficients of Floquet modes
D aperture arc angle, rad
djju�jj deviation parameter for velocity
ε difference in velocity magnitudes of u and u*

Q offset angle, rad
lk eigenvalues of Floquet operator
mk Floquet exponents, eigenvalues of L 2

n kinematic viscosity, m2/s
r density, kg/m3

t period of switching
4k eigenfunctions of L 2

Subscripts
f fluid
H horizontal
mw moving wall
p particle
sw stationary wall
s surface
w wall
V vertical
t top
b bottom
0 dominant eigenmode

Abbreviations
ADE advectionediffusion equation
DMD dynamic mode decomposition
FEM finite element method
IRT infrared thermography
PIV particle image velocimetry
RAM Rotated Arc Mixer
2D two-dimensional
3D three-dimensional
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