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a b s t r a c t

In this paper, exact analytical solutions for anisotropic conductive heat transfer in composite conical
shells are presented. To the knowledge of authors, the present work is the first exact study in the field of
heat conduction in anisotropic cones. The shell has a full conical shape and the fibers are winded around
the body. In order to obtain the most general solution, the general boundary condition is considered at
the basis of shell and the effect of heat convection resulted from flow motion around the body and
different kinds of non-axisymmetric radiative heat flux at outer side of shell is modeled. The exact so-
lution of temperature distribution is obtained via separation of variables method for a general form and
some special cases. Due to the existence of a dual second order derivative of temperature in heat transfer
equation, it is not possible to obtain directly the temperature distribution using the analytical techniques.
In order to cancel this term, the heat transfer equation is transformed to a canonical form using an
innovative transformation. The present analytical solution is validated via numerical solution and some
applied cases are considered to investigate the capability of current solution for solving the industrial
problems.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Today, applications of composite materials are significantly
extended in different branches of industry. These progressive ap-
plications are due to the unique properties of composite materials.
Composite materials have high ratio of strength to density thus
these materials are really appropriate for applications that strength
and lightness are major factors. Their significant anti-corrosion
features lead to use them in any special places and provides long
life for composite structures. Briefly some important applications
are considered such as, aerospace elements, heat exchangers,
pipelines, sporting goods, brake and friction systems, beams,
combustion chambers, pin fins, vessels and biomaterials.

Particularly, composite conical shells are used extensively in
aerospace industry as a nose cone but they have some applications
in other fields such as naval and civil structures, robots and so on.
Most of previous works investigated the mechanical behaviors of
composite laminates. In contrast, few works have considered the
heat transfer analysis of these materials. The available works about

heat transfer analysis usually performed using numerical methods
and the contribution of analytical solutions is small. Ma et al. [1,2]
used a linear coordinate transformation to simplify the anisotropic
problem to an equivalent isotropic one and finally obtained an
analytical solution for conductive heat transfer in an anisotropic
media. A mathematical formulation for steady-state heat conduc-
tion in multilayer bodies has been developed by Haji-Sheikh et al.
[3]. They showed that the eigenvalues for homogeneous layers are
real but for orthotropic layers could be complex. Onyejekwe [4]
using boundary integral theory presented an exact analytical so-
lution for conductive heat transfer in composite media. Blanc and
Touratier [5] presented a simple analytical model for conductive
heat transfer problems in multilayered structures based on an
equivalent single layer approach. Third order polynomial or trigo-
nometric functions in thickness of the laminate and boundary
conditions at the top and bottom of the laminate are used and
finally three-dimensional solution has been obtained. An analytical
solution is obtained by Miller and Weaver [6] that predicts tem-
perature distribution through multiple layers subject to convection
and radiation boundary conditions. Huang and Chang [7] presented
analytical solution of heat conduction in multilayer composite
materials for periodic, unsteady and steady states with use of
Green's functions. This method is appropriate for composites of any
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number of layers. Separation of variables method has been used by
Singh et al. [8] to find an analytical two-dimensional heat con-
duction solution in polar coordinate for multilayer medium. An
analytical solution of heat conduction in an orthotropic cylindrical
fin has been obtained by Bahadur and Bar-Cohen [9]. The results
also have been compared with the finite element solution. Lu et al.
[10] presented an analytical solution of transient temperature
distribution in multi-dimensional composite circular cylinder. In
this solution, the boundary conditions are supposed as time-
dependent temperature change and also the separation of vari-
ables method plays a significant role. Kayhani et al. [11] found an
exact analytical solution for steady-state conductive heat transfer
of cylindrical composite laminates in r�4 directions. This solution
is just appropriate for cylinder with high ratio of longitudinal to
radial dimension. An analytical solution for heat conduction of
cylindrical composite laminate is also presented by Kayhani et al.
[12]. The solution is in longitudinal and radial directions and in-
troduces temperature distribution for steady-state condition. Nor-
ouzi et al. [13] obtained an exact solution of unsteady conductive
heat transfer in cylindrical composite laminates. The Laplace
transformation is used to transform the orthotropic heat conduc-
tion equation to the frequency domain and finally the separation of
variables method is applied to solve the obtained differential
equations. Jain et al. [14] presented an analytical solution of
multilayer heat conduction in r�ɵ spherical coordinate for tran-
sient boundary-values. Materials in each layer are isotropic and the
solution is appropriate for different kind of homogeneous boundary
conditions. An exact analytical solution for steady-state heat con-
duction in spherical composite laminates is presented by Norouzi
et al. [15]. Heat conduction is investigated in r�ɵ directions and
general linear boundary conditions are used in both inside and
outside of laminate. The separation of variables method is used and
the final set of equations is solved using the recursive Thomas al-
gorithm. Almost all noted articles try to solve the heat conduction
problem in geometries such as: cube, cylinder and sphere but it is
really considerable that there are also other important geometries
that are significantly applicable in different industries. One of them
is conical geometry. Because of complicated geometry comparing
mentioned geometries that a cone has, finding an appropriate so-
lution for heat conduction problem is more difficult. Mahishi et al.
[16] presented transient heat conduction analysis of a laminated
composite nose cone subjected to aerodynamic heating using finite
element method. Rubin [17] investigated heat conduction in plates
and shells with emphasis on a conical shell. The author used the
thermal equations of the theory of a Cosserat surface to find the
average temperature and temperature gradient. Materials have
been supposed isotropic and the results have been compared with
exact solutions. Heat transfer by conduction through a truncated
conical shell has been studied by Ray et al. [18]. They used two
methods that the first method is based on semi-analytical solution
and the second is numerical investigation. From the results for
quick and accurate calculation of heat transfer, they found the inner
radius of an equivalent cylindrical shell of same thickness.

According to the literature, the previous studies about the
conductive heat transfer in composite conical shells are limited to
numerical or approximate semi-analytical solutions. The dearth in
the literature on exact analytical solution of this problem is related
to the complex form of governing equation and the geometry of
problem (especially difficulties in finding the suitable coordinate
system).

In the present paper, an exact analytical solution of steady-state
heat conduction in a composite conical shell is presented for the
first time. The cone is supposed as a full cone and the fibers are
winded around it with any arbitrary angle. The geometry of conical
shell is presented in Fig. 1. According to the Figure, two

independent directions x and 4 are showed as the components of
the coordinate system and also other necessary parameters used in
solution process have been indicated obviously. In order to cover
wide range of thermal conditions, a general linear boundary con-
dition is applied at the cone base which guarantees the present
solution usability in any industrial application.

Here, the heat transfer equation for an element of conical shell is
derived using the appropriate coordinate system. The exact solu-
tion of heat transfer equation is obtained via separation of variables
method. Generally, due to the existence of a dual second order
derivative of temperature in heat transfer equation ðv2T=vxv4Þ, it is
not possible to obtain directly the temperature distribution using
the separation of variable method. In order to solve this problem,
the heat transfer equation is transformed to a canonical form
(without any dual derivatives) using an innovative transformation.
The presented transformation guarantees applying the harmonic
boundary condition in angular direction (4) and it is shown that
finding the temperature distribution and eigenvalues of heat
transfer equation is easier by applying it on heat transfer equation.
The temperature distributions are also presented for three special
cases in which it does not need to use any transformation.

2. Heat conduction in composite materials

In this section, the basic concepts of heat conduction in com-
posite materials are discussed briefly. The general form of Fourier
law for conductive heat transfer in orthotropic materials is as fol-
lows [19]:
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where q is heat flux, kij is heat conduction coefficient and T is
temperature. Generally, on-axis ðx1; x2; x3Þ and off-axis ðx; y; zÞ co-
ordinate systems are defined to solve heat conduction problems in
composite materials [20]. Fiber orientation determines the direc-
tion of on-axis coordinate system in a way that x1 is parallel to the
fibers direction, x2 is perpendicular to the fibers direction in layer
and x3 is perpendicular to the layer plane. To study the physical
properties in specific directions, an off-axis coordinate systemmust
be specified. Therefore, there is an angular deviation of a between
the on-axis and off-axis coordinate systems and also these co-
ordinates are coincident.

Fourier relation for a composite material in on-axis coordinate
system is as follows [21]:
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As shown in Fig. 1, a is the angle between the tangent line on
cone in x direction and the tangent line in fiber's direction.
Applying the rotation by angle a to the on-axis heat conduction
coefficient tensor ½k�, the off-axis conductivity tensor ½k�, is obtained
as follows [12]:
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