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a b s t r a c t

Nonlinear problems arise in many heat transfer applications, and several analytical and numerical
methods for solving these problems are described in the literature. Here, the method of variation of
parameters is shown to be a relatively simple method for obtaining solutions to four specific heat
transfer problems: 1. a radiating annular fin, 2. conduction-radiation in a plane-parallel medium, 3.
convective and radiative exchange between the surface of a continuously moving strip and its sur-
roundings, and 4. convection from a fin with temperature-dependent thermal conductivity and variable
cross-sectional area. The results for each of these examples are compared to those obtained using other
analytical and numerical methods. The accuracy of the method is limited only by the accuracy with
which the numerical integration is performed. The method of variation of parameters is less complex and
relatively easy to implement compared to other analytical methods and some numerical methods. It is
slightly more computationally expensive than traditional numerical approaches. The method presented
may be used to verify numerical solutions to nonlinear heat transfer problems.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Modeling of heat transfer processes often results in the devel-
opment of nonlinear differential equations. Specifically, application
of an energy balance to a system frequently results in a nonlinear
differential equation that governs the temperature field in the
system. Phenomena that give rise to nonlinear differential equa-
tions include radiative exchange between surfaces, temperature-
dependent properties, modeling the dependence of a convective
heat transfer coefficient on temperature, and the coupling of the
energy equation with the total radiative heat flux in radiatively
participating media. In general, nonlinear differential equations do
not have analytical, closed-form solutions, so they are typically
solved using numerical methods. Best practice requires verification
of numerical solutions, and the analytical approach described in
this paper is a tool for verifying algorithms used to obtain numer-
ical solutions of nonlinear heat transfer problems.

Other analytical methods have been used to solve the nonlinear
differential equations that arise in heat transfer applications. One of
the most common nonlinear heat transfer problems comes from

the analysis of extended surfaces. Abbasbandy and Shivanian [1]
obtained an exact analytical solution to the convective fin prob-
lem in which the local convection coefficient along the fin surface
has a power-law-type dependence on the local temperature dif-
ference between the fin and the surrounding fluid. Arslanturk [2]
used the Adomian decomposition method (ADM) to analyze a
convective fin with temperature-dependent thermal conductivity
whileMoradi and Ahmadikia [3] solved a similar problem for fins of
variable cross-sectional area using the differential transformation
method (DTM). Aziz and Khani [4] used the homotopy analysis
method (HAM) to solve the nonlinear equation describing the
temperature distribution in a continuously moving radiative-
convective fin with temperature-dependent thermal conductivity.
The temperature distribution in convective annular fins with
temperature-dependent thermal conductivity has been found by
Ganji et al. [5] using the homotopy perturbation method (HPM)
while that of radiating annular fins has been found using a Green's
function approach [6e8]. The advantages of many of these
analytical approaches over numerical methods are their direct
applicability to both linear and nonlinear equations without
requiring linearization, discretization, or perturbation [3]. Howev-
er, implementation of these complex methods requires the use of
infinite power series.* Corresponding author.
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In addition to extended surfaces, nonlinear differential equa-
tions arise when analyzing the energy equation in a radiatively
participating medium. These problems are highly nonlinear
because the energy equation requires the total radiative heat flux,
which is found by solving the integro-differential radiative transfer
equation (RTE) [9]. These problems are encountered in the analysis
of combustion chambers, rocket nozzles, high-temperature heat
exchangers, translucent glass or ceramic coatings, porous insu-
lation, heat treatment of glass plates, and the drawing of optical
fibers. The combined conduction-radiation problem has been
solved using an integral transformation method [10,11], the finite
element method [12,13], the finite difference method [14,15], the
finite volume method [16,17], the lattice Boltzmann method
[18e20], and finite strip theory [21].

The variation of parameters method has been primarily used to
solve linear, nonhomogeneous differential equations, but applica-
tion of this method to solve nonlinear differential equations has
been described previously [22e25]. These publications focus on
general mathematical aspects of the solution, particularly applica-
tion of the method to problems involving an inhomogeneity that is
a function of the dependent variable. The contribution of this work
is a demonstration that the method of variation of parameters is a
relatively simple method of obtaining exact solutions to the
nonlinear differential equations that arise in a variety of heat
transfer applications. In addition to its intrinsic value as an
analytical solution procedure, this approach may be used to verify
solutions obtained using more computationally efficient numerical
methods.

Following a brief overview of how the method of variation of
parameters may be used to obtain exact solutions of nonlinear
equations, application of the method is illustrated by solving
models derived from analysis of four heat transfer applications.
Application of the method to the models developed for the first
three problems results in an integral equation that is solved
using numerical quadrature. Although numerical methods are
used, it should be noted that numerical integration may be
performed to an arbitrary degree of precision, so while not
closed-form, these solutions can be considered exact. The last
example requires finite difference approximations of derivatives,
so it is not an exact solution. These solutions are compared with
solutions obtained using other analytical or numerical methods.
These examples demonstrate that variation of parameters is an
easily implemented method of solving the nonlinear differential
equations that result from the analysis of a wide range of heat
transfer applications.

2. Method of variation of parameters

Consider the following second order partial differential
equation

d2y
dx2

þ C
dy
dx

þ Dy ¼ f ðx; yÞ; x1 � x � x2 (1)

where C and D are constants and f is a nonlinear function of the
independent variable x and the dependent variable y. The solu-
tion to the boundary value problem in Equation (1) consists of
the sum of the complementary and particular solutions. The
complementary solution is the solution to the homogeneous
equation corresponding to Equation (1) that may be found using
traditional solution techniques [26]. The complementary solu-
tion is

ycðxÞ ¼ c1y1ðxÞ þ c2y2ðxÞ (2)

where c1 and c2 are constants and y1 and y2 form a fundamental set
of solutions of the homogeneous equation. The particular solution
[26] is

yp ¼ u1ðx; yÞy1ðxÞ þ u2ðx; yÞy2ðxÞ (3)

where

u1ðx; yÞ ¼ �
Zx
x1

f ðt; yÞy2ðtÞ
Wðy1; y2Þ

dt (4)

u2ðx; yÞ ¼
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dt (5)
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The solution to Equation (1) is therefore

yðxÞ ¼ c1y1ðxÞ þ c2y2ðxÞ þ u1ðx; yÞy1ðxÞ þ u2ðx; yÞy2ðxÞ (7)

The constants c1 and c2 are found from the boundary conditions.
Because u1 and u2 are functions of the dependent variable, y, an
iterative approach using the method of successive approximations
is required to determine y, and numerical integration of Equations
(4) and (5) is required. Note that f may be a function of the de-
rivatives of y. In such cases, the derivatives of y are approximated
using finite difference equations.

In order to assess the accuracy and computational efficiency of
this approach relative to the accuracy and computational efficiency
of numerical methods, the variation of parameters solution and the
finite difference solution of Equation (8) are compared to its exact
solution [27].

y
00 ¼ xþ y (8)

Note that in this equation, the inhomogeneity is a function of
both the dependent and independent variables. If the y on the right
side is moved to the left side, this equation becomes a simple or-
dinary, linear, nonhomogeneous differential equations which may
be solved exactly. Solutions were obtained for various boundary
conditions. The average error in the variation of parameters solu-
tion ranged from 2.6% when 10 steps were used in the numerical
quadrature to 0.0007% when 1000 steps were used in the numer-
ical quadrature. Clearly, the accuracy of the variation of parameters
approach is limited only by the accuracy of the numerical inte-
gration. Complete details regarding the comparisons between the
exact solution and the variation of parameters solution are avail-
able in Ref. [27].

This problem was also solved using a finite difference method.
For a given step size, the average error between the exact solution
and that found using finite difference methods was the same as the
error between the exact solution and the variation of parameters
solution to four significant figures. The complexity of the imple-
mentation of the method of variation of parameters was compa-
rable to that of the finite difference approach and the
computational time required by the method of variation of pa-
rameters methodwas slightly larger than that required by the finite
difference approach.

Example 1. Radiating Annular Fin
Heat flux measurements are important in many processes and

procedures. These include monitoring ovens, furnaces, and kilns,
flammability testing, measuring the thermal properties of
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