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HIGHLIGHTS

® Developed a single particle model coupled chemical/mechanical degradation physics.
® Capacity fade and voltage changes are accurately and quickly predicted during cycling.
® The impact of operating parameters on battery capacity and power are revealed.

ARTICLE INFO ABSTRACT

Keywords:

Single particle model
Capacity degradation

State of health

Power loss

On-line estimation

Battery management systems

State of Health (SOH) estimation of lithium ion batteries is critical for Battery Management Systems (BMSs) in
Electric Vehicles (EVs). Many estimation techniques utilize a battery model; however, the model must have high
accuracy and high computational efficiency. Conventional electrochemical full-order models can accurately
capture battery states, but they are too complex and computationally expensive to be used in a BMS. A Single
Particle (SP) model is a good alternative that addresses this issue; however, existing SP models do not consider
degradation physics. In this work, an SP-based degradation model is developed by including Solid Electrolyte
Interface (SEI) layer formation, coupled with crack propagation due to the stress generated by the volume
expansion of the particles in the active materials. A model of lithium ion loss from SEI layer formation is in-
tegrated with an advanced SP model that includes electrolytic physics. This low-order model quickly predicts
capacity fade and voltage profile changes as a function of cycle number and temperature with high accuracy,
allowing for the use of online estimation techniques. Lithium ion loss due to SEI layer formation, increase in
battery resistance, and changes in the electrodes' open circuit potential operating windows are examined to
account for capacity fade and power loss. In addition to the low-order implementation to facilitate on-line
estimation, the model proposed in this paper provides quantitative information regarding SEI layer formation
and crack propagation, as well as the resulting battery capacity fade and power dissipation, which are essential
for SOH estimation in a BMS.

1. Introduction

Lithium Ion Batteries (LIBs) are key energy storage devices for many
applications due to their high energy and power densities, and are
widely used in Electric Vehicles (EVs) and Hybrid Electric Vehicles
(HEVs). A critical challenge, however, is the capacity degradation ex-
perienced during repeated charge/discharge cycles. Battery perfor-
mance declines over time due to irreversible physical and chemical
changes that naturally occur until the battery can no longer be used.
Therefore, State of Health (SOH) estimation is an essential component
of a Battery Management System (BMS) for a variety of energy storage
systems in transportation and stationary applications [1,2]. However,
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there are challenges in performing SOH estimation in a BMS. First, SOH
cannot be directly measured. Here, SOH refers to the state of a battery’s
condition compared to its initial condition, and is expressed as a loss of
capacity relative to the initial value. For instance, when the battery
capacity in EVs/HEVs reaches 80% of its initial capacity, the battery is
no longer considered usable [1].

Secondly, battery performance continuously degrades due to var-
ious mechanisms, both mechanical and chemical, which affect LIBs
during their lifetime. Therefore, studying these mechanisms require
long-term, in situ testing that typically requires the battery to be de-
stroyed. Moreover, it is challenging to decouple the effects of each of
these mechanisms on battery health and performance. Modern LIBs,
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Nomenclature

a crack length (m)

ag initial crack length (m)

brug Bruggeman coefficient

Co initial concentration (molm ™)

Cmax, pos POSitive maximum concentration (mol m~%)

Cmax, neg Ne€gative maximum concentration (molm™3)

D, diffusion coefficient in electrolyte (m*s ')

Dy solid-phase Li diffusivity (m?s™")

En activation energy for crack propagation (kcal mol 1)
Eqp activation energy for SEI layer growth (kcal mol ™)
E Young’s modulus of electrode material (N m~ 2%

F Faraday’s constant (C mol™ D)

i = p/s/n positive/separator/negative

Lopp applied current density (Am ™~ ?)

j =p/n positive/negative

I molar flux density (molsm™2)

k; electrolyte conductivities (Sm™ B)

k; reaction rate constant (m?°mol ~%%s™1)

ko crack propagation coefficient

Kszero SEI layer growth coefficient

ksgr SEI layer conductivity (Sm™%)

Lo initial crack width (m)

Ly initial SEI layer thickness (m)

L; electrode thickness (m)

Msgr molecular weight of compounds constituting SEI
(gmol ™~ D)

nri initial total number of lithium ions inside battery

Nggr consumed lithium ion for 1 mol of SEI layer formation

N cycle number

Qo battery capacity after formation cycle

Qin battery capacity before SEI layer formation cycle

Q graphite specific capacity (Ahg™ ")

Qn capacity after Nth cycle

R universal gas constant (Jmol 'K™1)

T particle radius (m)

Ry initial SEI layer resistance ()

ty cationic transport number

V(0)ly  initial voltage at each cycle (V)

& electrode porosity

Per number of cracks per unit area of particle (m™?

Pq graphite density (gcm ™)

PsEr density of SEI films (gm~3)

Q partial molar volume of solute (m®mol ~%)

which are fabricated from a variety of anode and cathode materials,
degrade due to a number of mechanisms that depend on the chemical
nature of their constituent materials. In general, battery degradation
mechanisms [3-6] include current collector corrosion, morphological
changes of active materials, electrolyte decomposition, Solid Electrolyte
Interphase (SEI) layer formation, and material dissolution. For example,
carbonaceous materials, which are the most common anode materials
in modern LIBs, have a significant amount of irreversible capacity loss
during initial cycling as the SEI layer is formed on the carbon surface
[3-5,7]. Moreover, the SEI layer continues to grow due to the con-
tinuous reduction of the electrolyte and the reformation of the SEI
layers, which re-consumes lithium ions and results in irreversible bat-
tery capacity loss. For instance, about 8-15% irreversible capacity loss
due to lithium ion loss is expected for MesoCarbon MicroBeads [5].
Further, mechanical damage to the battery will accelerate chemical
degradation. The basic function of an electrochemical material is ful-
filled by ions entering the active materials due to an electrochemical
potential gradient [8]. During this intercalation process, volume change
causes considerable stresses inside the particles, leading to mechanical
failures such as pulverization of, or cracks and fractures in, the active
materials. These cracks generate new surfaces on the particle, which are
then exposed to the electrolyte, leading to additional SEI layer forma-
tion and the acceleration of capacity fade and power loss [8-14].

Despite these difficulties, the foundation of many models of dif-
ferent battery aging mechanisms has been presented by the research
community to predict battery life. The studies in [15-20] utilized
physics-based models that provide very detailed information regarding
the battery electrochemical response. Capacity loss due to SEI layer
formation was simulated through a continuum-scale mathematical
model by considering the flux of the side reaction at the anode particle
surface [15,16] or by modifying the solid phase concentration to be a
function of the cycle according to lithium ion loss [17-19]. The effect of
mechanical degradation on capacity fade has also been simulated using
a full order physics-based model [20]. These models solve governing
physical equations, which include mass conservation and charge con-
servation in the solid and electrolyte phases, as well as kinetic reactions
at the interface between the solid and electrolyte.

A comprehensive and detailed state-of-the-art review of SOH esti-
mation for LIBs has been conducted in [21]. These methods can be
categorized as experimental techniques and adaptive methods.
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Experimental techniques depend on recorded experimental data and
previous knowledge about the effect of the operating conditions such as
temperature, cycle number, SOC, current magnitude on the battery
cycle life [21]. Although these methods are easy to implement onboard
BMSs, their validity is limited to the calibration data used in their de-
velopment. Furthermore, the wide range of operating conditions en-
countered in different battery applications, such as EVs, necessitates the
use of an adaptive SOH estimation methods. Adaptive methods utilize
parameters from battery models to estimate the SOH. Electrochemical
models can provide highly accurate predictions of the battery behavior
while providing insight into internal battery phenomena. Due to these
advantages, these models are gaining popularity in recent years in the
development of different BMS functionalities, such as SOH estimation.
For BMSs, however, there is still a challenge in incorporating battery
physics and degradation during on-line estimation.

Although a high fidelity electrochemical modes are ideal for the
detailed analysis of battery phenomena, they are too computationally
intensive to be efficiently utilized in a BMS [22]. This has led to efforts
to reduce the complexity of electrochemical models, such as the studies
in [23,24] that reduced the electrochemical model proposed by Doyle
et al. [25] into a form suitable for a BMS. To further simplify battery
models, most studies employ an Equivalent Circuit Model (ECM), which
describes the battery dynamic behavior as a voltage source and a series
of resistors and capacitors [26] and is widely used in BMSs due to the
model’s low complexity and ease of online implementation. However,
ECM models have no physical significance, which leads to low fidelity
and limited prediction capability. In addition, the prediction of battery
side-reactions is not feasible due to the difficulty of obtaining the bat-
tery internal dynamic characteristics. Therefore, higher accuracies can
be attained only by considering time-variant model parameters. The
Single Particle (SP) model is a common type of reduced-order model.
The SP model strikes the necessary balance between full order elec-
trochemical models and ECMs, and is becoming a popular model in
recent years for SOC and SOH estimation [27-31]. It assumes both
electrodes are composed of multiple uniform sized spherical particles,
and that the current distribution is uniform across both electrodes.
Thus, each electrode can be approximated by a single spherical particle.
The SP model is described by a set of ordinary differential equations,
yet it is directly derived from comprehensive electrochemical models
and, thus, explicitly retains many important battery properties with
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