Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Roadway to self-healing highways with integrated wireless electric vehicle charging and sustainable energy harvesting technologies

AppliedEnergy

Prasanth Venugopal^{*}, Aditya Shekhar, Erwin Visser, Natalia Scheele, Gautham Ram Chandra Mouli, Pavol Bauer, Sacha Silvester

Delft University of Technology, Mekelweg 04, 2628 CD, Delft, The Netherlands

HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- Imminent combination of roadway technologies creates opportunities and challenges.
- Sectional roads and mosaic integration create exciting combinational possibilities.
- Nissan LEAF completing its A12 highway trip with 30.3% on-road contactless coverage.

ARTICLE INFO

Keywords: Contactless power transfer Electric vehicles Green energy Inductive healing IPT Renewable energy Self-healing roads

ABSTRACT

Development of electric mobility and sustainable energy result in new technologies such as contactless electric vehicle charging and roadway energy harvesting methods, but also self-healing asphalt roads. By combining these technologies a new concept of Future Sustainable Roads for Electric Mobility is created and presented in the paper. This paper bridges the gap created by these unilateral technology developments using a multi-disciplinary approach including placing cautions when necessary and suggesting viable alternatives for optimal utilization of these energy transfer and conversion techniques. Through theoretical analysis, simulations, and tests on lab-scale experimental prototypes, the impact of our proposal is showcased. Thermal and loss models are developed for self-healing asphalt. Also, integration study of solar roads and contactless charging is performed. Applying the insight gained from the results, it is discussed how some challenges also pave a way towards interesting opportunities, for instance, infrastructure sharing for material use optimization and efficient mosaic integration. Finally, an economic viability case study is presented for a future Dutch highway with such newly emerging components.

1. Introduction

Electric mobility will reduce the CO_2 footprint, pollution level and help combat anthropogenic climate change [1]. A sustainable balance is thus struck between limited resources and socio-environmental demands. EVs can be further categorised as Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), Range Extender Electric Vehicle (REX) and Battery Electric Vehicle (BEV) [2]. However, only BEVs are ZEVs (zero emission vehicles) at the point of use considering the dependence of fossil fuels in the other forms of EVs [2]. The low

E-mail address: v.prasanth@tudelft.nl (P. Venugopal).

https://doi.org/10.1016/j.apenergy.2017.12.108

Received 28 September 2017; Received in revised form 28 December 2017; Accepted 30 December 2017

^{*} Corresponding author.

^{0306-2619/ © 2017} The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

Nomenclature		[A] area, m ²
		$[L_1, L_2, M]$ self and mutual inductances, H
$\left[\frac{dT}{dt}\right]$	heating rate, K s ⁻¹	[S _{out,max}] uncompensated power transfer, V A
[ø]	volumetric density, kg m ⁻³	[V _{out,oc}] open circuited voltage, V
$[C_p]$	specific heat capacity, J kg ⁻¹ K-1	[<i>I</i> _{out,sc}] short circuited current, A
[q]	volume related power density, W m ⁻³ .	[<i>P_{in,max},P_{out,max}</i>] input/output power, W
[W]	wind velocity, m s ^{-1}	$[\omega]$ angular frequency, radian/s
$[k_{a/c}]$	thermal conductivity asphalt/concrete, W m ⁻¹ K ⁻¹	$[R_1,R_2,R_M]$ resistance of primary, secondary and due to combined
h_c	convective heat transfer coefficient, W m ⁻² K ⁻¹	field, Ω
$[R_{a/c}]$	thermal resistance of asphalt/concrete, K W ⁻¹	[N _{primary} ,N _{pickup}] number of turns primary, pickup, –
$[Q_{in}]$	heat input, W	[k] magnetic coupling coefficient, –

Fig. 1. Future energy highway integrating inductive coils for both inductive power transfer and induction heating, with green energy technologies for (autonomous) electric mobility.

Download English Version:

https://daneshyari.com/en/article/6681083

Download Persian Version:

https://daneshyari.com/article/6681083

Daneshyari.com