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H I G H L I G H T S

• A non-contact and non-invasive data acquisition method via infrared thermography was utilized.

• A hidden Markov model learning approach is introduced to capture dynamic thermal comfort.

• Comfort is achieved via preventing existence of uncomfortable conditions as a logical inference.

• 82.8% of prediction accuracy for detection uncomfortable conditions was obtained.

• Generalizing hyper-parameters of the model enables unsupervised learning of thermal comfort.
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A B S T R A C T

Maintaining thermal comfort in built environments is important for occupant health, well-being, and pro-
ductivity, and also for efficient HVAC system operations. Most of the existing personal thermal comfort learning
methods require occupants to provide feedback via a survey to label the monitored environmental or physio-
logical conditions in order to train the prediction models. Accuracy of these models usually drops after the
training process as personal thermal comfort is dynamic and changes over time due to climatic variations and/or
acclimation. In this paper, we present a hidden Markov model (HMM) based learning method to capture personal
thermal comfort using infrared thermography of the human face. We chose human face since its blood vessels
has a higher density and it is not covered while performing regular activities in built environments. The learning
algorithm has 3 hidden states (i.e., uncomfortably warm, comfortable, uncomfortably cool) and uses dis-
cretization for forming the observed states from the continuous infrared measurements. The approach can po-
tentially be used for continuous monitoring of thermal comfort to capture the variations over time. We tested
and validated the method in a four-day long experiment with 10 subjects and demonstrated an accuracy of
82.8% for predicting uncomfortable conditions.

1. Introduction

Buildings account for about 30% of the total energy consumption in
the world [1] (50% of which is associated with HVAC systems) and
substantially contribute to the climate change (i.e., 30% of the global
greenhouse gas emissions [2]). Heating, Ventilation, and Air Con-
ditioning (HVAC) systems, responsible for providing thermal comfort in
buildings, often use time-invariant setpoints derived from thermal
comfort standards, such as the ASHRAE Standard 55 [3]. In several
cases, this reliance on time-invariant setpoints has caused HVAC sys-
tems not to perform as desired, causing inefficiencies [4,5]. More recent

models (e.g., adaptive models) account for climate variations for esti-
mating occupants’ thermal sensations [6]. However, prior research
demonstrated that existing thermal comfort models do not account for
several influential static and dynamic factors [4]. Static factors (e.g.,
race, gender [7]) are time-invariant across individuals, while dynamic
factors (e.g., acclimation, age, and food intake [8–12]) make thermal
comfort dynamic over time [13]. Although the impact of static factors
on thermal comfort might be quantifiable through extensive and ex-
haustive field experiments, it is not trivial to quantify and learn the
impact of dynamic factors. Lack of real-time access to building occu-
pants’ thermal comfort prevents control strategies to select temperature
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setpoints, which are more energy efficient. Potential savings of using
comfort-driven and energy-aware set points vary based on the building
size, type, construction materials, and climate in the range of 4–32%
[14,15].

The inability of existing thermal comfort models to accurately es-
timate dynamic personal thermal preferences has led the researchers to
explore various real-time thermal comfort sensing methods that are
feasible to be used in buildings. Thermal comfort is defined as the
condition of mind that expresses satisfaction with a thermal environ-
ment [16]. Consequently, thermal comfort can be measured directly
only by surveying individuals about their comfort. Existing research
and industry efforts to capture personal thermal comfort requires oc-
cupants to continuously provide feedback via surveys (e.g., surveys
delivered through web interfaces [17]). Survey based methods are
aimed to directly collect thermal preferences of occupants and conse-
quently require the individuals to continuously answer questionnaires
about their thermal comfort levels. Due to the advancements in parti-
cipatory sensing methods, occupants can provide thermal comfort
feedback via a web interface or an app to make the surrounding thermal
environment comfortable. Evidently, survey based models identify
comfort levels more accurately than the environmental and physiolo-
gical measurement based models as they try to directly extract the
“state of mind” of a person, however, they require continuous and
frequent user feedback. Since it is impractical to continuously query
occupants for their states of comfort, researchers have focused on en-
vironmental measurement based methods that aim to use training la-
bels to correlate thermal comfort states (through continuous occupancy
feedback) with environmental measurements (e.g., indoor air tem-
perature). However, sensor and occupant locations in a built environ-
ment, as well as the size/volume of an environment make the trained
models difficult to generalize. Moreover, methods based on the mea-
surements of environmental factors do not take into account time-de-
pendent variations into consideration unless continuous occupant
feedback is provided. A comprehensive review of the two group of
methods can be found in our earlier publication [18].

To reduce or ultimately eliminate the need for continuous feedback
requirements for training of personal comfort models, physiological
responses (e.g., skin temperature, heart rate, core temperature [19,20])
could be used to learn comfort. Physiological measurement based ap-
proaches are built upon the principle that physiological responses can
be correlated with thermal discomfort. In other words, comfort is po-
tentially maintained if no uncomfortable conditions occur. Hence,
correlating the monitored measurements with occupant feedback en-
ables predictive models to estimate an occupant’s probability of dis-
comfort. For example, the authors of [21] introduced a data driven
predictive method that integrates personalized factors with a general-
ized model of the body heat balance. The model coefficients were cal-
culated dynamically based on comfort votes via minimizing an error
function (i.e., least square) of coefficients. Since the data collection was
done on a daily basis, the authors argued that the modeling account for
time variations of comfort. In [22], a deep artificial neural network
(ANN) learning technique was used for classifying environmental con-
ditions into three categories: comfortable, uncomfortably warm, and
uncomfortably cool. The ANN algorithm had 4 input layers (i.e., air
temperature, radiant temperature, air flow, air humidity) and 5 hidden
layers. The algorithm was trained with the comfort votes of the test
subjects under controlled experiments. However, the time dependent
variations of thermal comfort were not included in the study. The au-
thors of [23] developed a heuristic based method, which relates occu-
pants’ thermal sensations with body exergy usage rate. Their results
showed that both the radiative and convective heat exchanges between
an environment and a human body are satisfactory measures of body
exergy usage rate. Time dependent variations were assumed to be in-
herently integrated in the exergy.

An adaptive thermal comfort modeling technique, which used the
PMV (predictive mean vote) model as a prior model, was introduced in

[24]. The model calculated an adaptation coefficient, which decreased
or increased the estimated PMV values. The adaptation coefficient was
calculated based on a field study that took into account local climate,
culture, and social backgrounds. In [25], the authors developed an
adaptive fuzzy-logic based algorithm that learns comfort on-line, using
individuals’ actions on thermostats and environmental conditions. The
fuzzy sets were aligned with the desired changes to the thermostat. A
multiple regression model that takes mean skin temperature and its
time differential as input and predicts transient thermal sensations was
introduced in [20]. The results showed strong correlations (with 0.8 as
correlation coefficient) for the proposed technique for predicting the
sensations. The authors in [26] explored the applicability of using heart
rate variability (HRV) index and the electroencephalograph (EEG) as an
indicator of thermal comfort. They carried out experiments to in-
vestigate how environmental temperature influences the HRV and EEG
of people and relate the two factors with the thermal comfort. They
found that HRV index may be closely related to thermal comfort sen-
sations. However, their EEG analysis demonstrated that although there
could be a relationship between comfort and the measurements, future
research is required to make use of the EEG measurements. In [27],
authors presented a mathematical model of thermal sensation based on
the neurophysiology of thermal reception. Experimental data from 12
subjects were used to develop the model and 8 subjects to validate it.
The collected data included skin and core temperature measurements.
For the development dataset, 12 young adult males were exposed to
transient conditions where air temperature varied from 30 to 20 to 35
to 30 °C. For validation, 8 young adult males were exposed to relatively
different transient conditions where air temperature varied from 17 to
25 to 17 °C. The predictive model had a mean r-squared error of 0.89 for
the training stage and the relatively low mean r-squared error of 0.38.

The majority of the models mentioned above require the occupants
to continuously provide feedback to train the predictive model. In other
words, occupants are responsible for training the learning model to
adapt to their thermal preferences. Thus, there is a need for a data
collection technique that enables unsupervised personal thermal com-
fort learning techniques. Moreover, current physiological based
methods require the sensing system to be directly connected or inserted
into the human body. To be practical and adapted widely by building
occupants, this modeling technique should be built using the data
collected by a non-invasive sensing technique. Providing real-time
personal thermal comfort information to HVAC controllers could enable
designing new optimization and control paradigms that select more
energy efficient setpoints while ensuring occupants’ comfort.

One of the responses of human body to thermal stress (i.e., heat or
cold) relates to cutaneous vessels. The sympathetic neural control of
skin blood flow includes the noradrenergic vasoconstrictor system and
cholinergic active vasodilator system [28,29]. Accordingly, thermo-
regulation system alters heat exchange with the environment by mod-
ifying the skin blood flow through cutaneous arterioles and veins [30].
Distribution of cutaneous vessels is not uniform across a human body.
On areas around the human face, the density of vessels is considerably
higher [30], enabling higher blood circulation. In addition, human face
is usually not covered by clothing in buildings therefore infrared ra-
diation on a human face could be monitored easily. Therefore, in this
paper, we used facial skin temperature as a measure of skin blood flow
to characterize the thermoregulation responses of human body to hot
and cold stresses. We specifically focused on four points on face (i.e.,
ear, nose, front face, and cheekbone) as they are located on different
cardiovascular territories [30] and behave differently under hot or cold
thermal stimuli [31]. By monitoring the thermoregulation performance,
we aim to identify the thermoneutral zone and consequently predict
thermal comfort. There are several methods for measuring skin blood
flow, including venous occlusion plethysmography, Doppler ultra-
sound, laser Doppler, thermostrom, photoelectric plethysmography,
impedance and radioactive isotopes [32–34]. Even though these
methods have shown promising results for monitoring skin blood flow,
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