Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Modelling of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell

AppliedEnergy

Giuseppe Diglio^a, Dawid P. Hanak^b, Piero Bareschino^a, Francesco Pepe^a, Fabio Montagnaro^c, Vasilije Manovic^{b,*}

^a Dipartimento di Ingegneria, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy

^b Combustion and CCS Centre, Cranfield University, Cranfield MK43 OAL, United Kingdom

^c Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Napoli, Italy

HIGHLIGHTS

- A fixed bed reactor network was evaluated for sorption-enhanced steam methane reforming.
- A high-purity H₂ stream (92%) and a concentrated CO₂ stream were obtained.
- The system is energy-self-sufficient with near-zero-CO₂ emissions.
- Integration of the system with a fuel cell led to a 51% net global efficiency.

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Keywords: Sorption-enhanced steam methane reforming Fixed bed reactor network Hydrogen Solid oxide fuel cell Energetic self-sufficiency

ABSTRACT

In this study sorption-enhanced steam methane reforming (SE-SMR) in fixed beds is investigated by means of 1D numerical modelling, and the model is validated with the data reported in the literature. Isothermal conditions (973 K) are considered, and the equilibrium between the carbonation and calcination stages is shifted by a pressure swing: $3.5 \cdot 10^6$ Pa and 1013 Pa, respectively. The results showed that under these operating conditions at least 8 reactors in parallel are required to continuously produce a high-purity stream of H₂, and a separated stream of concentrated CO₂. The average H₂ purity is 0.92, whilst the average H₂ yield and selectivity are 2.9 mol_{H2} mol_{CH4}⁻¹ and 90%, respectively. A thermodynamic analysis was performed, which highlighted that, by using a portion of the produced H₂ (about 0.4 mol_{H2} mol_{CH4}⁻¹), it is possible to fully cover heat and power demands of the process, making it completely energy self-sufficient. In the case when the proposed SE-SMR is integrated with a solid oxide fuel cell, net power generation at the scale of ~950 kW_{el} can be achieved with a net efficiency of the entire system of 51%, with the important feature that CO₂ is concentrated.

1. Introduction

Currently, the interest in hydrogen production technologies is on the increase, since $\rm H_2$ is considered as an environmentally friendly

alternative for various industrial processes. The current literature reports that H_2 can be used as fuel for power generation [1], as chemical raw material for the synthesis of ammonia or the refining of crude oil [1], as well as for fuel cell applications [2]. However, H_2 is just an

http://dx.doi.org/10.1016/j.apenergy.2017.10.101

^{*} Corresponding author. E-mail address: v.manovic@cranfield.ac.uk (V. Manovic).

Received 4 July 2017; Received in revised form 3 October 2017; Accepted 29 October 2017 0306-2619/ © 2017 Elsevier Ltd. All rights reserved.

Nomenc	lature
A _a	aspect ratio of the external surface area to the volume of
	the reactor wall, m^{-1}
A _{EH}	heat surface area required by CAS, m ²
A _r	surface of reactor vessel, m ²
A _w	aspect ratio of the internal surface area to the volume of $1 - 1$
0	the reactor wall, m $^{-3}$
C _i	concentration of species 1, mol m $\frac{1}{2}$
с _р D	near capacity, J kg K axial dispersion coefficient $m^2 s^{-1}$
D _{ax} d	diameter m
u En i	activation energy of reaction i. $J \text{ mol}^{-1}$
En.	electric power demand of vacuum pump. W _{ol}
Enet	net alternate current power production, W _{el}
E _{SOFC}	SOFC alternate current power, W _{el}
F	Faraday constant, A s mol ^{-1}
$\mathbf{f}_{\mathbf{u}}$	SOFC fuel utilisation
G	mass flux of the gas phase, $kg m^{-2} s^{-1}$
g	acceleration due to gravity, $m s^{-2}$
H _{ext}	external heating and power, J mol _{CH4} ⁻¹
h _f	gas-solid heat transfer coefficient, $W m^{-2} K^{-1}$
h _i	enthalpy of gas species i, J mol ⁻¹
h _{ext}	external convective heat transfer coefficient, W m $^{-1}$ K
Ո _ՠ հ	gas-solid mass transfer coefficient, m s internal convective best transfer coefficient. $Wm^{-2}K^{-1}$
i i	$ras species (CH, H_0, H_1, CO, CO_1)$
i	reaction (SMR WGS OSMR CR CAR)
J K:	adsorption coefficient of species i
Ki	equilibrium constant of reaction i
k _i	rate constant of reaction j
Ĺ	reactor length, m
LHV	lower heating value, $J \mod^{-1}$
М	molecular weight, kg mol $^{-1}$
ṁ	gas mass flow rate, kg s ^{-1}
ms	mass of solid in the reactor, kg
N _{Me}	Mears number, –
N _R	number of reactors, –
n _{CH4,in}	inlet CH_4 molar flow rate, mol s
11 _{H2,SE} -SM	$mol s^{-1}$
'n _{CH4,SE−S}	MR CH ₄ molar flow rate at the outlet of SE-SMR process,
	$mol s^{-1}$
Р	pressure, Pa
Pi	partial pressure of gas species i, bar
P ₀	standard pressure, Pa
Pr	Prandtl number, –
Ų Ċ	thermal power W.
Q Q _{hurner}	thermal power generated by external burner, W_{th}
Q _f	thermal power required to warm up feed gas streams, W _{th}
\dot{Q}_{SE-SMR}	thermal power required by SE-SMR process, W _{th}
Q _{SOFC}	thermal power generated by SOFC, W _{th}
Q _{ref}	thermal power required by SOFC internal reforming pro-
Da	cess, w _{th}
RU Do	Rayleign number, –
R R	ideal gas constant $Imol^{-1}K^{-1}$
R:	reaction rate of reaction i mol $k\sigma^{-1}s^{-1}$
r:	rate of formation or consumption of species i.
-1	$mol m^{-3} s^{-1}$
Sc	Schmidt number, –
S_{H2}	H ₂ selectivity, %
s _s	reactor wall thickness, m
U	external overall heat transfer coefficient from the wall to
	the ambient air, $W m^{-2} K^{-1}$

u	gas superficial velocity, $m s^{-1}$
Т	temperature, K
T_w	temperature of the reactor wall, K
t	time, s
t _{calc}	period of calcination stage, s
t _{carb}	period of carbonation stage, s
X _{sorb}	sorbent conversion degree, %
X _{max}	maximum sorbent conversion, %
X _{CH4}	methane conversion, %
Vr	reactor volume, m ³
V _{loss}	fuel cell voltage loss, V
VSOFC	SOFC voltage, V
yi	molar fraction of gas species I, -
Z	axial spatial variable, m

Greek letters

α_a	thermal diffusivity at the film temperature, $m^2 s^{-1}$		
β_b	thermal expansion coefficient, K^{-1}		
Yel,SOFC	SOFC electrical efficiency, %		
γinv	inverter efficiency, %		
Yref	reforming process efficiency, %		
$\Delta G_{\rm f}^{\ 0}$	change in molar Gibbs free energy of formation, $J \text{ mol}^{-1}$		
ΔH^0	standard enthalpy of reaction, $J \text{ mol}^{-1}$		
ΔH_{RJ}	enthalpy of reaction j, $J \mod^{-1}$		
ΔP	maximum pressure drop, Pa		
ε _g	bed void fraction, –		
ζ	dimensionless axial spatial coordinate, -		
$\eta_{\rm H2}$	H_2 yield, $mol_{H2} mol_{CH4}^{-1}$		
$\eta_{\rm H2,equivalent}$ H ₂ -equivalent yield, mol _{H2} mol _{CH4} ⁻¹			
θ	steam-to-methane feed ratio during carbonation stage, -		
ı	partition ratio, –		
λ_{amb}	external air thermal conductivity, $W m^{-1} K^{-1}$		
λ_{ax}	axial heat dispersion coefficient, $W m^{-1} K^{-1}$		
$\lambda_{\rm w}$	reactor wall thermal conductivity, $W m^{-1} K^{-1}$		
μ_{g}	gas viscosity, Pa s		
νv	kinematic viscosity at the film temperature, $m^2 s^{-1}$		
ρ	density, kg m ^{-3}		
σ	internal diffusion effectiveness factor, -		
$\tau_{\rm car/calc}$	period of the carbonation/reforming and calcination		
	cycle, s		
$\tau_{\rm SE-SMR}$	total period of the SE-SMR process, s		
φ	portion of reactors operating in the considered stage		
φ	heat transfer effectiveness factor, –		
ψ	steam-to-CO ₂ feed ratio during calcination stage, –		
ω _v	mass fraction of component y (sorbent or catalyst), –		
3	× 5 · 5 / 7 /		

Subscripts

amb	ambient
cat	catalyst
eq	equilibrium
g	gas
in	inlet
obs	observed
р	particle
r	reactor
S	solid
sorb	sorbent
out	outlet
w	reactor wall

Acronyms

CALCR CALCination Reaction

Download English Version:

https://daneshyari.com/en/article/6681127

Download Persian Version:

https://daneshyari.com/article/6681127

Daneshyari.com