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a b s t r a c t

In the thermal processing of continuous casting and rolling, the metal is continuously moving. The
sections of the moving metal can be rod, sheet or other structural ones. Usually, the thermal conductivity
of metals will vary with temperature. In this paper, the spectral collocation method (SCM) is presented
and formulated to simulate the heat transfer process in a continuously moving convective-radiative rod
with variable thermal conductivity. In this approach, the dimensionless temperature is approximated by
Chebyshev polynomials and discretized by ChebysheveGausseLobatto collocation points. A particular
algorithm is used to reduce the nonlinearity of the energy conservation equation. Compared with those
available data in literature, the SCM can provide good accuracy for a wide range of parameters, such as
the dimensionless thermal conductivity coefficient, the convectiveeconductive parameter, the radiative-
conductive parameter, the Peclet number, the dimensionless convective sink temperature, and the
dimensionless radiative sink temperature. Meanwhile, the SCM can provide exponential convergence
rate against node for the present problem. Moreover, the effects of various aforementioned parameters
on the dimensionless temperature distribution and the dimensionless tip temperature are discussed and
physically interpreted.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

The thermal performance analysis of fin or extended surface is
one of the fundamental topics in the field of heat transfer [1]. It has
widely applications in engineering industries, such as cooling sys-
tem of space radiators, heat radiators in automobiles, heat ex-
changers in power plants, etc. When doing thermal performance
analysis of the fin, the assumptions of constant thermo-physical
properties (such as, thermal conductivity, heat transfer coefficient
and surface emissivity) can reduce the mathematical complexity of
energy equation, and allow to obtain analytical solution for energy
equation [2]. However, if a large temperature difference between
the fin-tip and fin-base exists, variation of the thermal conductivity
is very significant and should be considered as temperature-
dependent [3]. Because the variable thermal conductivity will in-
crease the nonlinearity of energy conservation equation, it is
impossible to obtain the analytical solution. Therefore, one

alternative way to solve energy conservation equation is by
approximation or numerical method.

Aziz and Huq [4] used a perturbation method to analyze heat
transfer process in the convective fin with temperature-dependent
thermal conductivity as early as in 1975. Yu and Chen [5] gave
rigorous formulations using a Taylor transformation, and investi-
gated the optimal fin length of the convective-radiative rectangular
straight fin with variable thermal conductivity. Chang [6] used the
Adomian decomposition method (ADM) to analyze the thermal
characteristics of the rectangular fin with power-law temperature-
dependent heat transfer coefficient, while Arslanturk [7] extended
the ADM to obtain the temperature distribution and the fin effi-
ciency. Khani et al. [8] utilized the homotopy analysis method
(HAM) to evaluate analytical approximate solutions and the effi-
ciency of the convective fin problem with temperature-dependent
thermal conductivity and heat transfer coefficient. Chowdhury
et al. [9] developed the HAM to obtain the temperature distribution
of the rectangular fin with power-law temperature-dependent
surface heat flux, and compared with those results of homotopy
perturbation method (HPM) and ADM. It was found that HPM and
ADM are peculiar cases of HAM for this problem. Malekzadeh and
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Rahideh [10] applied the finite difference method (FDM) and the
different quadrature method (DQM) to analyze heat transfer in a
pin fin with different boundary conditions. In Ref. [11], the varia-
tional iteration method (VIM) was proposed to solve nonlinear
equations arising in heat transfer. The differential transformation
method (DTM) was used to investigate the fin efficiency of
convective fins with variable thermal conductivity [12], the tem-
perature distribution of convective-radiative fin with multiple
nonlinearities [13], and the thermal performance of convective-
radiative straight fins with various cross-sections [14]. Recently,
the least square method (LSM) [15] was adopted for predicting
temperature distributions in circular porous fins with different
section shapes and materials.

After the year 2000, many researchers have studied heat
transfer of the moving convective-radiative fin. Aziz and Khani [16]
proposed the HAM with 20 terms of series to solve heat transfer in
the moving fin with temperature dependent thermal conductivity
and heat loses by both convection and radiation. Aziz and Lopez
[17] used a numerical algorithm built into Maple 14 to investigate
the thermal processing in a continuously moving rod with variable
thermal conductivity and considering both convective and radia-
tive heat losses. Torabi et al. [18] developed the DTM to solve this
kind of problem, while Kanth and Kumar [19,20] adopted the Haar
wavelet method (HWM). Recently, Saedodin and Barforoush [21]
applied the DTM to analyze the thermal processing of moving
convective-radiative plates with temperature-dependent thermal
conductivity, heat transfer coefficient and surface emissivity.

In the community of computational mechanics or numerical
simulations, spectral collocation method (SCM) is one of the
spectral methods, which are high order numerical methods and can
provide exponential node convergence rate (in other words, spec-
tral accuracy) [22e24]. Due to the mathematical simplicity and
computational efficiency, the SCM has turned out to be an efficient
tool in science and engineering applications, such as computational
fluid dynamics [25e28], quantum physics [29], magneto-
hydrodynamics [30e33] and thermal radiation heat transfer
[34e38]. To the best of our knowledge, the SCM has not been
applied to analyze the heat transfer in the moving convective-
radiative rod with temperature-dependent thermal conductivity.

In this research, the convective-radiative heat transfer of a
continuously moving rod with temperature-dependent thermal
conductivity is investigated by the SCM. In the following of this
paper, the physical model and mathematical formulation are pre-
sented in Section 2. In Section 3, the accuracy and convergence rate
of the SCM against node are demonstrated by available results from
references. In addition, the effects of six dimensionless parameters,
including the dimensionless thermal conductivity coefficient a, the
convectiveeconductive parameter Ncc, the radiativeeconductive
parameter Nrc, the Peclet number Pe, the dimensionless convective

sink temperature Qa and the dimensionless radiative sink tem-
peratureQr, on the dimensionless temperature distribution and the
dimensionless tip temperature in the moving rod are also analyzed
also in Section 3. Finally, conclusions are summarized in Section 4.

2. Mathematic formulation

As shown in Fig. 1, we consider the thermal processing of a
moving rod with temperature-dependent thermal conductivity.
The shape of moving rod is defined with cross-sectional area A and
perimeter P. The velocity of the moving rod is v. The hot rod
emerges from a hotter environment at a constant temperature Tb to
a colder temperature and loses heat by natural convection and
radiation. The convective sink temperature Tc and radiative sink
temperature Tr are assumed to be different, and can vary inde-
pendently. The surface of the moving rod is assumed to be diffuse
and gray, the surface emissivity ε and the heat transfer coefficient h
are assumed to be constant. The radiative heat exchange between
the rod and the tip is neglected. If a large temperature variation
exists within the moving rod, the thermal conductivity of the
moving rodmay vary with temperature, and can be taken as [17,20]

l ¼ lc½1þ a0ðT � TcÞ� (1)

where lc is the thermal conductivity at the convective sink tem-
perature Tc, and a

0
is the thermal conductivity coefficient which is

determined by material. For example, the thermal conductivity
coefficient of aluminum is a0 ¼ �3.9375 � 10�4 K�1 when the rod
temperature decreases from 800 K to 100 K [3].

From the view of energy conservation, the steady-state energy
equation of the moving rod with a constant speed and heat loses
through natural convection and radiation can be expressed as [18]

d
dx

�
lðTÞdT

dx

�
� hP

A
ðT � TcÞ � εsP

A

�
T4 � T4r

�
þ rcPv

dT
dx

¼ 0 (2)

where r is the density of material, cP is the specific heat capacity at
constant pressure.

There are Dirichlet boundary condition and Neumann boundary
condition for the moving rod. As shown in Fig. 1, the boundary
condition at base for Eq. (2) is assumed to be constant temperature
Tb, likely

Tðx ¼ 0Þ ¼ Tb (3)

The boundary condition at tip for Eq. (2) is assumed to be
adiabatic and can be written as

dT
dx

����
x¼L

¼ 0 (4)

Fig. 1. Schematic diagram of convection and radiation from the surface of a moving rod.
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