Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Energy efficiency evaluation of a stationary lithium-ion battery container storage system via electro-thermal modeling and detailed component analysis

Michael Schimpe^{a,*}, Maik Naumann^a, Nam Truong^a, Holger C. Hesse^a, Shriram Santhanagopalan^b, Aron Saxon^b, Andreas Jossen^a

^a Technical University of Munich (TUM), Institute for Electrical Energy Storage Technology (EES), Arcisstr. 21, 80333 Munich, Germany
 ^b National Renewable Energy Laboratory, Transportation and Hydrogen Systems Center, Golden, CO 80401, USA

HIGHLIGHTS

- A holistic model for stationary battery systems is developed.
- In total 18 energy loss mechanisms in the system are analyzed and modelled.
- The model is parametrized based on an existing prototype battery system.
- Different grid applications are simulated for estimation of real-world performance.
- A detailed analysis of the battery system energy efficiency is given.

ARTICLE INFO

Keywords: Energy efficiency Battery storage system Lithium-ion Container system Energy loss mechanism analysis Thermal network model

ABSTRACT

Energy efficiency is a key performance indicator for battery storage systems. A detailed electro-thermal model of a stationary lithium-ion battery system is developed and an evaluation of its energy efficiency is conducted. The model offers a holistic approach to calculating conversion losses and auxiliary power consumption. Sub-models for battery rack, power electronics, thermal management as well as the control and monitoring components are developed and coupled to a comprehensive model. The simulation is parametrized based on a prototype 192 kWh system using lithium iron phosphate batteries connected to the low voltage grid. The key loss mechanisms are identified, thoroughly analyzed and modeled. Generic profiles featuring various system operation modes are evaluated to show the characteristics of stationary battery systems. Typically the losses in the power electronics outweigh the losses in the battery at low power operating points. The auxiliary power consumption dominates for low system utilization rates. For estimation of real-world performance, the grid applications Primary Control Reserve, Secondary Control Reserve and the storage of surplus photovoltaic power are evaluated. Conversion round-trip efficiency is in the range of 70–80%. Overall system efficiency, which also considers system power consumption, is 8–13 percentage points lower for Primary Control Reserve and the photovoltaic-battery application. However, for Secondary Control Reserve, the total round-trip efficiency is found to be extremely low at 23% due to the low energy throughput of this application type.

1. Introduction

The majority of human-induced carbon dioxide emissions come from fossil fuels that today still provide 80% of global primary energy demand [1]. Climate change requires a transition to a low-carbon energy supply, which often includes the intensified use of renewable energy sources such as wind and solar [2]. As wind and solar are volatile energy sources, the issue of decoupled production and demand load arises. Flexibility options such as variable generation, demand-side management, and grid expansion can support the reduction of unbalanced production and load. For a stable energy supply with high shares of volatile renewable energy sources, energy storage at large-scales for short and long-term is a technically possible option [3–5].

Recently, lithium-ion batteries have achieved significant cost

* Corresponding author.

https://doi.org/10.1016/j.apenergy.2017.10.129

E-mail address: michael.schimpe@tum.de (M. Schimpe). *URL*: http://www.ees.ei.tum.de/en/ (M. Schimpe).

Received 27 June 2017; Received in revised form 17 October 2017; Accepted 31 October 2017 0306-2619/ © 2017 Elsevier Ltd. All rights reserved.

Applied Energy 210 (2018) 211–229

Nomenclature P _{Loss,Interfa}			
		$P_{\text{Loss,LCL,Con}}$	
Abbreviat	ions	$P_{\text{Loss,LCL,Cor}}$	
		$P_{\text{Loss,PE}}$	
AC	alternating current	QAirC	
AirC	air conditioning	$Q_{\text{Batt-Sys}}$	
C & M	control & monitoring	Q _{Block}	
DC	direct current	Q _{Block-AmbM}	
IGBT	insulated-gate bipolar transistor	Q _{Cell}	
OCV	open circuit voltage	QCond,PE-Sys	
PCR	primary control reserve	Öcand Ambor	
PE	power electronics	Cond,Ambou	
PV-B	photovoltaic-dattery	<i>.</i> <i>.</i>	
RMS	root mean square		
SCR	secondary control reserve	$\dot{Q}_{ m Conv, Duct-Ba}$	
300	state of charge		
Parameters & variables		$\dot{Q}_{ m Conv, Duct-PI}$	
		$\dot{Q}_{ m Conv, Duct-Sy}$	
ΔIJ	hattery overvoltages	. i	
ΔU ΔT	temperature difference in thermal network	Q _{Conv,PE-Sys}	
21 n	round-trip conversion efficiency	$\dot{Q}_{\mathrm{Conv,PE-Am}}$	
"Conversion	round-trip total efficiency		
η _{Total}	relative losses of mechanism <i>i</i>	$Q_{ m Conv,Sys-Am}$	
Ψ_i τ_i	temporal utilization of system		
τ_t	charge-based utilization of system	$Q_{\text{Conv,Sys-Duc}}$	
LQ A	interface area in thermal network		
<i>C</i>	specific heat capacity of air	Q _{Throughput}	
C _{p,Air}	specific heat capacity of cell	Q _{Throughput,t}	
Cycell	nominal capacity of battery		
	heat capacity of cell block	$R_{\rm i}$	
	heat capacity of cell	$R_{\rm th}$	
COP	coefficient of performance for cooling/heating	R _{th,Block-Amb}	
Echanna	total system energy input (grid-side)	D	
EDisabarga	ctotal_system_energy_output (grid-side)	R _{Contact}	
Discharge,A	energy loss of mechanism <i>i</i>	R _{DC10s,Exp}	
En	nominal energy of battery	R _{DC10s,Scaled}	
Eoff	turn-off energy of IGBT	R _{LCL,total}	
E_{On}	turn-on energy of IGBT	S C	
E_{Rec}	recovery energy of diode	5	
Esystem Con	sumption total system energy consumption for auxiliary	SOL	
- System Con	components	<i>t</i> _{Operation}	
fair	grid frequency	l _{Simulation}	
f	switching frequency	I _{Air,Duct}	
i _C	collector current	$I_{\rm Air, PE}$	
ice	collector-emitter current	I _{air,Sys}	
i _F	forward current	^I AmbientMod,	
iGrid	grid-side current of LCL-filter	I _{Block}	
I	battery current	1 _ј . т	
$\dot{m}_{Air,Module}$	air mass flow rate in the battery module	I _{Ref}	
<i>m</i> _{Air.PE}	air mass in power electronics zone	UCE	
$m_{\rm air,Sys}$	air mass in battery zone		
$m_{\rm Cell}$	battery cell mass	U _F	
m _{Connector.}	Block battery cell block connector mass		
$P_{\rm AirC}$	power consumption air conditioning	U _{Hys}	
P _{C&M.Batt}	power consumption C & M battery		
P _{C&M.PE}	power consumption C & M power electronics	U _{Min}	
P _{C&M Svs}	power consumption C & M system	U _{Nom}	
P _{Fan,Nom}	nominal power fan	U _{OCV}	
$\overline{P}_{\text{Loss.Block}}$	average experimental power losses in cell block	U _{OCV,Ref}	
P _{Loss.Diode.0}	conduction losses in diode	し _T 这	
P _{Loss.Diode.}	switch switching losses in diode	VFan	
P _{Loss,IGBT,Cond} conduction losses in IGBT			
P _{Loss,IGBT,S}	witch switching losses in IGBT		

D Loss Interfac	losses in interface module
Loss,Internae	nd conduction losses in LCL-filter
Loss,LCL.Co	re core losses in LCL-filter
Loss,PE	conversion losses power electronics
ŽAirC	heat flow of air conditioning unit into ventilation duct
ZBatt-Sys	(overall) heat input from battery rack to battery zone
2 Block	heat input from cell operation into cell block
ŽBlock-AmbM	heat exchange of cell block to air in battery module
QCell	heat input from cell operation into cell
QCond,PE-Sys	conductive heat flow from power electronics zone to bat-
	tery zone
Cond,AmbO	_{uutd-Sys} conductive heat flow from ambient outdoor to bat-
ja uto	convective heat flow from ambient outdoor to
Conv,AmbO	ventilation duct
Conv Duct-F	ent convective heat flow from ventilation duct to battery
COIIV,Duct-I	rack
Conv Duct-F	_E convective heat flow from ventilation duct to PE zone
Conv Duct-S	convective heat flow directly from ventilation duct to
Ceonv,Duer E	battery zone
ZConv.PE-Svs	convective heat flow from PE zone to battery zone
Ż _{Conv.PE-An}	abOutd convective heat flow from PE zone to ambient out-
cconv,r E 7m	door
QConv,Sys-Ar	nbOutd convective heat flow from battery zone to ambient
ja a p	convective heat flow from battery zone to ventilation
Conv,Sys-Di	duct
) _{m1} 1	charge-throughput of battery
2 Inroughput	theoretical maximum charge-throughput of
Inroughput	battery
Ri	battery resistance cell model
R _{th}	thermal heat transfer resistance
Rth,Block-Am	bientMod thermal heat transfer resistance cell block to am-
	bient air in module
R _{Contact}	electrical contact resistance
R _{DC10s,Exp}	experimental battery resistance derived from 10 s pulse
R _{DC10s,Scale}	d calculated battery resistance derived from 10 s pulse
R _{LCL.total}	total inductor resistance of LCL-filter
;	battery self-discharge rate
5	battery entropy
SOC	state of charge
Operation	total time of system in operation
Simulation	total duration of simulation
Air.Duct	air temperature ventilation duct
Air PE	air temperature PE zone
air Sys	air temperature battery zone
AmbientMod	$R_{\text{Row}k}$ air temperature in module in row k
Block	cell block temperature
G	junction temperature
Ref	reference temperature battery model
J _{CE}	collector-emitter voltage in IGBT
JDC	blocking voltage in IGBT
J _F	forward voltage diode
J _{Grid}	grid voltage
J _{Hvs}	battery hysteresis voltage
J _{Max}	maximum battery voltage
J _{Min}	minimum battery voltage
JNom	nominal battery voltage
Joev	open circuit battery voltage
JOCV Por	open circuit battery voltage at reference temperature
J _T	terminal battery voltage
Fan	fan volumetric flow rate
Fan Nom	nominal fan volumetric flow rate
1 an INUIT	

Download English Version:

https://daneshyari.com/en/article/6681179

Download Persian Version:

https://daneshyari.com/article/6681179

Daneshyari.com