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H I G H L I G H T S

• Guaranteed convergence particle swarm optimization (GCPSO) is proposed to determine the parameters of PV cells and modules.

• The proposed new method is evaluated using experimental data in three different case studies.

• The GCPSO method determine reliable solutions quickly and accurately.

• The proposed GCPSO mitigates premature convergence problem and particle swarm stagnation.

• It provides better performance than many other popular optimization methods.
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A B S T R A C T

Determining the mathematical model parameters of photovoltaic (PV) cells and modules represents a great
challenge. In the last few years, several analytical, numerical and hybrid methods have been proposed for ex-
tracting the PV model parameters from datasheets provided by the manufacturers or from experimental data,
although it is difficult to determine highly reliable solutions quickly and accurately. In this paper, we propose a
new method for determining the PV parameters of both the single-diode and the double-diode models, based on
the guaranteed convergence particle swarm optimization (GCPSO), using experimental data under different
operating conditions. The main advantage of this method is its ability to avoid premature convergence in the
optimization of complex and multimodal objective functions, such as the function that determines PV para-
meters. To validate performance, the GCPSO method was compared with several analytical, numerical and
hybrid methods found in the literature. This validation considered three different case studies. The first two are
important reference case studies in the literature and have been widely used by researchers. The third was
performed in an experimental environment, in order to test the proposed method under a real implementation.
The proposed methodology can find highly accurate solutions while demanding a reduced computational cost.
Comparisons with other published methods demonstrate that the proposed method produces very good results in
the extraction of the PV model parameters.

1. Introduction

Energy production constitutes an enormous challenge for this cen-
tury. Thus, the technologies for the production of electrical energy
through renewable resources will have an important role, not only due
to the increase in global public awareness concerning the need for en-
vironmental protection, but also the need to decrease fossil fuel de-
pendency in the production of electrical energy, mostly due to the high
levels of carbon intensity and, in the case of countries where fossil fuel

energy is entirely derived from importation (as in the Portuguese case),
the risks associated with supply.

With the advent of this new paradigm, there is a need for reliable
modelling techniques to rigorously predict the production of electrical
energy, in particular photovoltaic (PV) energy production. Such pre-
diction depends mainly on climatic factors (especially temperature and
solar radiation), but also on the mathematical model being used for the
PV cell or module, as well as on the available information that condi-
tions/determines the corresponding modelling technique.
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Several mathematical models in the literature simulate the beha-
viour of the PV cell or module under different operating conditions,
including the single-diode model [1,2], the double-diode model [3,4],
the multidiode model [5,6] and the multidimension diode model [7,8].
However, the main models found in the technical literature on this
matter are the single-diode model (characterized by 5 parameters) and
the double-diode model (characterized by 7 parameters). Recently some
other models have emerged aiming to better characterize the behaviour
of the different PV technologies, such as the multidiode model, with m-
diodes connected in parallel, characterized by 3+2m parameters.
Theoretically, more diodes (m > 2) can be added to the equivalent PV
cell or module electrical circuit to better analyse the effects that take
place in the P-N junction [5]. Another example is the multidimension
diode model, which allows the increase in the number of parallel-
connected diodes, as well as series-connected diodes, creating a net-
work of diodes arranged in such way as to increase accuracy [8]. The
present model aims to obtain a higher accuracy in parameter extraction
for thin film technologies [7]. The accuracy of each of these models is
closely related with the parameters to be extracted.

PV modelling techniques can be grouped according to either the
available information or the type of method. On one hand, the available
information constrains how the parameter extraction that characterizes
the mathematical model is performed. Parameters can be extracted
from information in the datasheets provided by the manufacturers
[2,4,9–12] or extracted from the experimentally measured current-
voltage (I-V) characteristic curve [5,13–18]. On the other hand, there
are normally three method categories: analytical methods [19–24],
numerical methods [1,25–31] and hybrid methods [32–42].

The analytical methods are usually formulated through elementary
functions [3,43,44] applied to specific characteristic points of the I-V
and P-V curves or by means of simplifications/approximations that
convert equations into the explicit form, e.g., the Lambert W function
[45–47]. Although calculations are simple and quick, several ap-
proaches require the resolution of a system of nonlinear, multivariable
and multimodal equations (with several local optimal solutions), where
performance depends upon the initial solution [37,48]. Other aspects
that negatively affect performance are the error measurement of the
characteristic points of the I-V and P-V curves, as well as the need to

perform simplifications/approximations giving rise to lower accuracy
[28,49]. In [9] a method is proposed for the extraction of the five
parameters of the single-diode model based on five analytical equations
without any simplification, using datasheets provided by the manu-
facturers under the standard test conditions (STC). However, [50]
concludes that in the approach proposed by [9] the fifth equation is not
linearly independent from the remaining equations. Consequently, the
solution proposed by [9] is not unique, allowing infinite solutions.

Several reduction techniques, known as reduced forms (RF) that
lower the dimensions of the search space, are presented in [15,51].
With these reduction techniques, the five parameters that characterize
the single-diode model are divided into two independent parameters:
the ideality factor of the diode (n) and the series resistance (Rs); and
three dependent parameters: the photoelectric current (Iph), the reverse
saturation current of the diode (I0), and the parallel resistance (Rp).
Therefore, the number of solutions is decreased and the problem of the
five parameters for the single-diode model becomes convex. In [18]
another method using the same concept is presented: reduced-space
search (RSS).

In order to mitigate the disadvantages of the analytical methods,
recently several authors used deterministic and stochastic numerical
methods to extract the parameters that characterize the mathematical
model of the PV cell or module. The Newton-Raphson method (NRM)
[13] or the Levenberg-Marquardt algorithm (LM) [17] are examples of
such deterministic methods. Despite being very efficient methods, in a
local search they can converge prematurely upon local minima; to be
applied they need continuity, convexity, and differentiability condi-
tions; and, moreover, their efficiency is dependent upon initial posi-
tioning [37,40]. There are a greater variety of stochastic methods, in-
cluding genetic algorithm (GA) [52], particle swarm optimization
(PSO) [53], harmony search (HS), grouping-based global HS (GGHS)
and innovative global HS (IGHS) [54], artificial bee swarm optimiza-
tion (ABSO) [55], bird mating optimizer (BMO) [56], cuckoo search
(CS) [57], teaching learning based optimization (TLBO) [58], simplified
TLBO (STLBO) [59], generalized oppositional TLBO (GOTLBO) [60],
self-adaptive TLBO (SATLBO) [61], artificial bee colony (ABC) [62],
improved ABC (IABC) [63], modified ABC (MABC) [64], biogeography-
based optimization with mutation strategies (BBO-M) [65], mutative-

Nomenclature

c1, c2 positive constants of acceleration
d search space dimension
gbest global best position
itermax maximum number of iterations allowed
I measured current [A]
I0, I01, I02 diode reverse saturation currents [μA]
Id, Id1, Id2 diode currents [A]
Impp current at the maximum power point [A]
Iph photoelectric current [A]
Isc short-circuit current [A]

̂I estimated current [A]
I arithmetic mean of measured current [A]
k Boltzman constant [J/K]
n, n1, n2 diode ideality factors
N number of the experimental I-V data pairs
Np number of particles in the population
Ns number of cells connected in series
p particle number of the population Np

pbest personal best position
q electron charge [C]
r1, r2 random numbers in [0,1]
Rp parallel resistance [Ω]
Rs series resistance [Ω]

R2 determination coefficient
Sc, fc threshold parameters of successes and failures
t current iteration
T temperature [K]
V measured voltage [V]
Vmpp voltage at the maximum power point [V]
Voc open-circuit voltage [V]
Vt thermal voltage [V]
x particle position
AE absolute error
IAE individual absolute error
MAE mean absolute error
MBE mean bias error
MSE mean squared error
RMSE root mean square error
SSE sum squared error
STD standard deviation
ξ weighted RMSE
ρ scale factor
τ parameters of the models
ϕ velocity restriction auxiliary constant
ν particle velocity
χ velocity restriction constant
ψ index of the global best particle
ω inertia weight
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