ARTICLE IN PRESS

Applied Energy xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Performance assessment of five MCP models proposed for the estimation of long-term wind turbine power outputs at a target site using three machine learning techniques

Santiago Díaz^a, José A. Carta^{a,*}, José M. Matías^b

^a Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands, Spain ^b Department of Statistics, University of Vigo, Lagoas Marcosende, 36200 Vigo, Spain

HIGHLIGHTS

- Five models based on MCP methods to estimate WTPOs at a target site are assessed.
- Models are proposed which take into account air density variability.
- Three machine learning techniques implemented in the models are analysed.
- The models use wind turbines with blade pitch control and stall-regulated wind turbines.
- Statistical hypothesis tests are used to compare the ML techniques in the best model and to compare some of the models.

ARTICLE INFO

Keywords: Support vector machine Artificial neural network Random forest Wind turbine power curve Wind turbine power output Air density

ABSTRACT

Various models based on measure-correlate-predict (MCP) methods have been used to estimate the long-term wind turbine power output (WTPO) at target sites for which only short-term meteorological data are available. The MCP models used to date share the postulate that the influence of air density variation is of little importance, assume the standard value of 1.225 kg m^{-3} and only consider wind turbines (WTs) with blade pitch control.

A performance assessment is undertaken in this paper of the models used to date and of newly proposed models. Our models incorporate air density in the MCP model as an additional covariable in long-term WTPO estimation and consider both WTs with blade pitch control and stall-regulated WTs. The advantages of including this covariable are assessed using different functional forms and different machine learning algorithms for their implementation (Artificial Neural Network, Support Vector Machine for regression and Random Forest).

The models and the regression techniques used in them were applied to the mean hourly wind speeds and directions and air densities recorded in 2014 at ten weather stations in the Canary Archipelago (Spain). Several conclusions were drawn from the results, including most notably: (a) to clearly show the notable effect of air density variability when estimating WTPOs, it is important to consider the functional ways in which the features air density and wind speed and direction intervene, (b) of the five MCP models under comparison, the one that separately estimates wind speeds and air densities to later predict the WTPOs always provided the best mean absolute error, mean absolute relative error and coefficient of determination metrics, independently of the target station and type of WT under consideration, (c) the models which used Support Vector Machines (SVMs) for regression or random forests (RFs) always provided better metrics than those that used artificial neural networks, with the differences being statistically significant (5% significance) for most of the cases assessed, (d) no statistically significant differences were found between the SVM- and RF-based models.

1. Introduction

When making a decision as to whether a particular wind turbine (WT) should be installed at a target site it is of interest to know the wind

turbine power outputs (WTPOs). The WTPOs are estimated using the power curve of the WT and the characteristics of the wind regime and air density at the site where the WT is to be installed (or not). The estimated long-term gross annual mean WTPO at a target site allows a

https://doi.org/10.1016/j.apenergy.2017.11.007

^{*} Corresponding author.

E-mail address: jcarta@dim.ulpgc.es (J.A. Carta).

Received 8 August 2017; Received in revised form 3 October 2017; Accepted 2 November 2017 0306-2619/ © 2017 Elsevier Ltd. All rights reserved.

ARTICLE IN PRESS

S. Díaz et al.

Nomenclature MCP		
AEMET	Spanish initials: State Meteorological Agency of the	ML
	Ministry of the Environment and Rural and Marine	Mtrv
	Environs of the Spanish Government	5
ANN	Artificial Neural Network	M1, , N
b	Bias parameter in Support Vector Regression. Eqs. (3) and	
	(4)	n
BH	Benjamini and Hochberg step-up procedure [61]	n _i
BMA	Bayesian Model Averaging	
С	constant that determines the trade-off between the flatness	Neurons
	of $f(x)$ and the amount up to which deviations larger than	
∈ are tole	rated in Support Vector Machines. Eqs. (3) and (4)	Nodesize
ci	weights which analyse the error functions in the case of	
	model M5. Eqs. (14) and (15)	<i>o</i> _{<i>i</i>}
C(v(z))	electrical power coefficient of a wind turbine in function	
	of the wind speed $v(z)$ measured at the height z of the hub	ō
	of said wind turbine	
d	number of neurons in the input layer of an Artificial	S
P	Neural Network. Eq. (2)	PDF
D	variable that represents the wind direction in degrees	Pr
e _i	variable that represents the estimated values. Eqs. (14),	p-value
Encolo	(22), (23) and (24)	D((-)
Epochs	Maximum number of iterations permitted in the Artificial	$P(v(z), \rho_0)$
FEDED	Spanich initiale: European Regional Development Fund	
f EDER	regression function	
$f(\mathbf{x})$	Pandom Forest function applied over L regression trees	D
$J_k(x)$	Fa (9)	R.
$f(v D \alpha)$	function which estimates the target site wind speed using	Nj
$J_{v}(v, \mathcal{D}, \mu_{0})$	the wind speed and direction data of the reference stations	R ^d . R ^h
	and standard air density $(1.225 \text{ kg m}^{-3})$. Eq. (12)	RF
$f_{}(v,D,\rho)$	function which estimates the target site wind speed using	RFE
50 () 4 /	the wind speed and direction data and mean air densities	RMSE
	of the reference stations. Eqs. (10), (11) and (13)	RSS
$f_{\rho}(\rho,D)$	function which estimates the target site air densities using	\mathbb{R}^2
- p	the air densities and wind directions of the reference stations (kg m^{-3}) Eq. (16)	SIOSE
£	regression calculated with the mean of the regults of	CUM
JRF	tained in the Lectimated regression trees Eq. (19)	SVD
CIS	Geographical Information System [45]	T
$k(\mathbf{x},\mathbf{x})$	Kernel function in Support Vector Machine Eqs. (4) and	$T(\tau)$
n (n(,,,,,))	(5)	V
$h_i(\cdot), g(\cdot)$	Activation function in the Artificial Neural Network al-	•
JC77 0C7	gorithm. Eq. (2)	\overline{v}
H_0	null hypothesis. Eq. (25)	
H_1	alternative hypothesis. Eq. (25)	v_{i}
IEC	International Electrotechnical Commission	
ISO	International Standard Organization	v(z)
ITC	Spanish initials: Technological Institute of the Canary	
	Islands	w _{ij}
$I(\cdot)$	function pertaining to the Random Forest method which	Wj
	returns a value equal to 1 if the argument is true and 0	
	otherwise. Eq. (6)	WS
L	Pseudo-training set from the sample T comprised of n data	WS-1,,V
	with which L regression trees are separately fitted. Eq.	
	(19)	WT-1
LTS	long-term support	
т	neurons in the hidden layer of the Artificial Neural	WT-2
	Network. Eq. (2)	Y
M	number of trees in the Random Forest technique. Eq. (6)	y_i
MAC	space of cooperation formed by the outermost regions of	V
MAE	Mean Absolute Error (LW) Eq. (22)	л х
MARE	Mean Absolute Relative Error Eq. (22)	\boldsymbol{x}_i
	mean ribbonute neutrice Error, Eq. (20)	

МСР	Measure-Correlate-Predict
MIP	Multilaver percentron
MI.	Machine Learning
Mtrv	number of variables randomly organised as candidates in
	each division made in the nodes of the regression trees
M1, , N	M5 MCP models to estimate the WTPOs and which are
	assessed in this paper
n	Number of data. Eqs. (10), (11), (12), (13) and (16)
n _i	total number of observations of the target variable Y
	pertaining to the leaf node, R_j , in Random Forest. Eq. (7)
Neurons	number of neurons of the hidden layer in the Artificial
	Neural Network technique
Nodesize	minimum size of the terminal nodes in the Random Forest
0.	variable that represents the observed values. Fas. (14)
o_i	(22) (23) and (24)
ō	variable that represents the mean of observed values. Eq.
	(24)
S	Support vectors in Support Vector Machine
PDF	Probability Density Function
Pr	Rated power. Eq. (15)
p-value	the estimated probability of rejecting the null hypothesis
	(H_0) when that null hypothesis is true
$P(v(z), \rho_0$) power curve of a wind turbine which provides, for a
	specific air density, (ρ_0), the relationship between the wind speed $y(z)$ at hub height z and the electrical power
	generated
R	gas constant of dry air $(JK^{-1}mol^{-1})$. Eq. (18)
R _i	nodes which form each one of the tress in the calculation
5	of the Random Forest technique. Eqs. (6), (7) and (8)
ℝ ^d , ℝ ^h	feature space where "h" is usually bigger than "d"
RF	Random Forest
RFE	Recursive Feature Selection
RMSE	Root Mean Square Error. Eq. (14)
RSS D^2	Residual Sum of Squares. Eq. (8)
r Siose	Spanish initials: Information System of Land Occupation
SIOSE	in Spain
SVM	Support Vector Machine for regression
SVR	Support Vector Regression
Т	data sample comprised of variables \mathbf{x}_{i} and y_{i}
$T(z_r)$	reference height air temperature. Eq. (18)
V	variable which represents the weather station wind speed
	(ms ⁻¹)
\overline{v}	variable which represents the mean wind speed $(m s^{-1})$.
12	Eqs. (10), (11), (12) and (13)
vi	(ms^{-1}) Fas (10) (11) (12) and (13)
v(z)	variable which represents the mean hourly wind speed at
	hub height $(m s^{-1})$. Eqs. (19), (20) and (21)
w _{ij}	weights in Artificial Neural Network technique. Eq. (2)
w _j	weights of the connections of the m neurons of the hidden
	layer with bias β_j . Eq. (2)
WS	Weather Station
WS-1,,V	NS-10. codes assigned to the weather stations used in this
አ /፹ 1	Work Wind Turbing with active newer control considered in this
** 1-1	study
WT-2	stall-regulated wind turbine considered in this study
Y	set of targets sites
y_i	vector which contains the predicted values at the target
-	site. Eq. (1)
X	set of references sites
\boldsymbol{x}_i	vector which contains each observation of the variables X
	at the reference sites

Download English Version:

https://daneshyari.com/en/article/6681585

Download Persian Version:

https://daneshyari.com/article/6681585

Daneshyari.com