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a b s t r a c t

Non-equilibrium heat conduction, as occurring in modern-day sub-micron semiconductor devices, can
be predicted effectively using the Boltzmann Transport Equation (BTE) for phonons. In this article,
strategies and algorithms for large-scale parallel computation of the phonon BTE are presented. An
unstructured finite volume method for spatial discretization is coupled with the control angle discrete
ordinates method for angular discretization. The single-time relaxation approximation is used to treat
phononephonon scattering. Both dispersion and polarization of the phonons are accounted for. Three
different parallelization strategies are explored: (a) band-based, (b) direction-based, and (c) hybrid band/
cell-based. Subsequent to validation studies in which silicon thin-film thermal conductivity was suc-
cessfully predicted, transient simulations of non-equilibrium thermal transport were conducted in a
three-dimensional device-like silicon structure, discretized using 604,054 tetrahedral cells. The angular
space was discretized using 400 angles, and the spectral space was discretized into 40 spectral intervals
(bands). This resulted in ~9.7 � 109 unknowns, which are approximately 3 orders of magnitude larger
than previously reported computations in this area. Studies showed that direction-based and hybrid
band/cell-based parallelization strategies resulted in similar total computational time. However, the
parallel efficiency of the hybrid band/cell-based strategydabout 88%dwas found to be superior to that of
the direction-based strategy, and is recommended as the preferred strategy for even larger scale
computations.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Overheating is one of the most common causes of semi-
conductor device failure. The POWER7, launched in early 2010,
contains 1.2 billion transistors on a single processor and dissipates
about 100 W/cm2. As VLSI technology scales, thermal issues are
becoming the dominant factor in determining performance, reli-
ability, and cost of high-performance integrated circuits. According
to the International Technology Roadmap for Semiconductors
(I.T.R.S) published in 2012 [1], understanding of fundamental
physical mechanisms underlying thermal transport at the device
scale is critical to the development of heat removal strategies.
Therefore, modeling of thermal transport at the device scale can be
beneficial in shedding light on the physical mechanisms at play.

The mean free path of the energy-carrying acoustic wave
packets (or phonons) in silicon at room temperature is approxi-
mately 300 nm [2]. On the other hand, characteristic dimensions of
modern semiconductor devices range from a few tens of nano-
meters to a few hundreds of nanometers [1e3]. Consequently, heat
conduction in such devices cannot be described adequately using
continuum equations, namely the Fourier law of heat conduction.
The Boltzmann Transport Equation (BTE) for phonons has been
used successfully in the past for the prediction of non-equilibrium
heat conduction phenomena, and continues to be popular because
of its validity over a large range of length scales [3].

The BTE is a seven-dimensional nonlinear integro-differential
equation: 3 spatial coordinates, 3 wavevector coordinates, and
time. Even in its linearized form (i.e., under the so-called single
relaxation time approximation), it is a seven-dimensional partial
differential equation. Thus, its solution is quite challenging. The
existing literature on the solution of the BTE for phonon transport
reveals that there are essentially three methods that have been
employed to date to solve the BTE: (a) the Monte Carlo method, (b)
the Lattice BoltzmannMethod, and (c) deterministic discretization-
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based methods. While the Monte Carlo method is amenable for the
inclusion of complex physics such as dispersion, polarization,
boundary scattering etc., as originally demonstrated by Mazumder
and Majumdar [4] and subsequently used by several researchers
[5,6], it is prohibitively expensive for practical engineering appli-
cations. In recent years, variance reduction techniques have
enabled use of the Monte Carlo method for solution of the BTE in
somewhat realistic three-dimensional structures [7]. The lattice
Boltzmann method has only been used for the solution of the
phonon BTE in simple two-dimensional structures [8,9]. Deter-
ministic solution of the BTE has its early roots in neutron and ra-
diation (photon) transport, and has been brought to the limelight
for phonon transport primarily by Murthy and co-workers [10e13].
Some research has also been conducted by the same researchers on
hybridizing BTE-based models with continuum (Fourier-based)
models [14]. Much of the work on deterministic solution of the BTE,
however, has only been demonstrated for relatively simple two-
dimensional structures and/or steady state. Recently, Mittal and
Mazumder [15e17] have demonstrated solution of the unsteady
gray BTE in large-scale three-dimensional structures with about
400,000 grid points and 400 directions. To the best of the authors'
knowledge, to date, the unsteady solution of the phonon BTE with
the inclusion of dispersion and polarization using deterministic
methods has only been demonstrated in regular Cartesian one- and
two-dimensional structures [10e14,18e20]. This is because such
computations are challenging both from a memory as well as
computational time standpoint.

To bring to light the magnitude of the computational challenge
that has to be overcome to solve the unsteady phonon BTE with the
inclusion of dispersion and polarization effects, it is instructive to
conduct a back-of-the-envelope estimate. It is estimated that the
solution of the BTE in a practical device, such as a transistor, will
arguably require ~5 M nodes or cells to adequately resolve all the
relevant length scales and obtain grid-independent solutions. To
date, deterministic solution of the BTE with the inclusion of
dispersion and polarization has only been conducted in simplified
two-dimensional geometries with only ~104 nodes or cells [19].
Since the BTE is a directional equation, discretization in two addi-
tional independent angular spaces (polar and azimuthal angles) is
necessary. Typically, for 3D calculations, about 20 � 20 (q � j)
angular resolution is necessary to obtain angular grid independence
[15,16]. Finally, when dispersion and polarization are considered,
the phonon frequency (or wavevector) space must be discretized
into ~100 spectral intervals or bands [17,20]. This results in ~2� 1011

unknowns, which requires approximately 1600 GB of runtime
memory just to store the unknowns in double precision. Thus, from
a memory perspective alone, solution of the non-gray BTE for
practical semiconductor devices will requiremassive parallelization.

The afore-mentioned challenge in solution of the phonon BTE
has not been previously encountered in the solution of the radiative
transfer equation (RTE), although it is almost identical in form to
the phonon BTE. This is because of one fundamental difference. For
most terrestrial applications, the RTE is solved in its steady-state
form. The time-scales for light transport are so fast compared to
other processes (such as fluid flow or chemical reactions), that for
all practical purposes, the radiation field may be assumed to attain
steady state almost instantaneously. In this scenario, the entire
intensity array does not have to be stored. The contributions of the
various bands and directions (at least in the case when in-
scattering is neglected) can be cumulatively added to obtain the
net heat flux or its divergence. In the case of the phonon BTE, the
unsteady equation must be solved, because for most applications,
the temporal evolution of the temperature field is of interest. Since
initial conditions for each directional and spectral intensitymust be
provided, there is no alternative to storing the entire intensity

array, making phonon BTE computations orders of magnitudemore
memory intensive than RTE computations.

Another challenge is the computational time required to perform
such calculations. Depending on the time-step size, and the solvers
used, it may take between 10 and 20 iterations to attain 3e4 orders
of magnitude convergence within each time step. The iterations are
necessary to couple the BTEwith the overall energy equation, and to
couple the directional BTEs. Thus, for a single time step, assuming
thatmatrix-vectormultiplication is thedominantprocess (suchas in
the case of Krylov sub-space solvers) for determining floating point
operations (flops), the number of flops needed per time step is
5�106� 20� 20� 100� 10� 6¼ 1.2� 1013, where the number 6,
for example, denotes the number of neighbors of each cell (e.g., in a
hexahedral 3D mesh). Typically, most engineering calculations of
this nature require execution of between 103e104 time steps to
reach steady state or to extractmeaningful time-dependent physical
quantities. Therefore, a computation of this type will require ~1017

floating point operations. To bring these numbers into perspective,
to the best of the authors' knowledge, the largest reported parallel
computation in this area is the one by Ni and Murthy [20] who
performed calculations on a 2D rectangular domain with
80� 80 cells, 64 angles, and 80 spectral bands, resulting in ~3� 107

unknowns (compared to the estimated ~2 � 1011 unknowns for
practical semiconductor device computations). The present work
attempts to close the gap between the state-of-the-art and the ul-
timate goal. Its contribution lies in presenting and demonstrating a
scalable algorithm for parallel computation of the phonon BTE for
test problems that are several orders of magnitude larger than
previously reported studies in this area.

2. Theory and mathematical formulation

Quantized lattice vibrations or phonons are the predominant
carriers of thermal energy in semiconductor materials [21]. If the
mean free path of the traveling phonons is larger than the char-
acteristic dimension of the device being modeled, thermodynamic
equilibrium ceases to exist, and thus, the Fourier law of heat con-
duction is invalid. Heat conduction, in such a scenario, is referred to
as non-equilibrium heat conduction. The Boltzmann Transport
Equation for phonons has found prolific usage in the prediction of
non-equilibrium heat conduction in semiconductor materials.

2.1. Boltzmann Transport Equation

The Boltzmann Transport Equation (BTE) has been successfully
used to model phonon transport. Under the single-time relaxation
approximation, the BTE for phonons becomes a linear partial dif-
ferential equation, and may be written as [3]

vf
vt

þ yg$Vf ¼ f0 � f
t

(1)

where f is the distribution function of an ensemble of phonons, f0 is
the equilibrium number density function (i.e., the BoseeEinstein
distribution function), t is the overall scattering time-scale of the
phonon due to all scattering processes in combination, and yg is the
group velocity. The left side of Eq. (1) represents change in the
distribution function due to motion (or drift), whereas the right
hand side represents change in the distribution function due to
collisions (or scattering). Drift causes the phonon energy distribu-
tion function to deviate from equilibrium, while collisions tend to
restore equilibrium.

For an isotropic wavevector space, the distribution function, f, is
a function of seven independent variables, i.e., f ¼ f ðt; r;bs;uÞ;
where t is time, and u is the angular frequency. The space vector r
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