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H I G H L I G H T S

• Novel instantaneous energy management strategy for series hybrid electric vehicles.

• Finds a range for optimal equivalent factor of equivalent consumption minimization strategy.

• The strategy needs less calibration in comparison with existing instantaneous strategies.

• Simulation Model is developed based on experimental setup of powertrain components.
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A B S T R A C T

This paper introduces a new energy management (EM) strategy for series hybrid electric vehicles (HEVs). Series
HEVs operate in charge-depletion mode and then switch to the charge-sustaining mode in which the battery state
of charge (SOC) is maintained within a certain range. The proposed EM strategy in this paper is a form of
adaptive equivalent consumption minimization strategy (ECMS) that is designed for the charge-sustaining mode.
The EM strategy defines soft bounds on the battery SOC and is penalized for exceeding these bounds. But, to
catch energy-saving opportunities (CESOs), the EM strategy allows SOC to exceed the soft bounds. Thus, the
introduced EM strategy is named ECMS-CESO. In addition, a range for the ECMS optimal equivalent factor is
proposed for series HEVs. The proposed range is used in deriving the formula for calculating the adaptive
equivalent factor. The main advantage of the proposed EM strategy is that ECMS-CESO can achieve close to
optimal fuel economy without the need for predicting future driver demand. Since there is no need for pre-
diction, the intensive calculations for finding the optimal control over the prediction horizon can be eliminated.
Therefore, implementation of ECMS-CESO is easily feasible for real-time applications. Experimental powertrain
data is collected to develop a powertrain model for a series HEV in this study. Simulation results on several
drivecycles show that, on average, the fuel economy achieved by ECMS-CESO is within 6% of the maximum fuel
economy. In addition, comparing ECMS-CESO with two existing adaptive ECMSs shows up to 5% improvement
in fuel economy, on average.

1. Introduction

The transportation sector is one of the main sources of greenhouse
gas emissions and global warming [1,2]. To comply with new en-
vironmental regulations, many technologies are introduced to reduce
fuel consumption and pollutant emissions in transportation sector [3,4].
Hybridizing the vehicle powertrain is one of the technologies to im-
prove vehicle fuel economy and reduce greenhouse gas emissions [5].
In addition to liquid fuel, hybrid electric vehicles (HEVs) are equipped

with at least one renewable energy source like batteries or super-ca-
pacitors. The existence of at least two energy sources in HEVs ne-
cessitates an energy management (EM) strategy for dividing the driver-
demanded power among the available power sources efficiently. Many
studies have shown that energy management strategies have a con-
siderable impact on HEV fuel consumption [6–11].

Different EM strategies for HEVs include: Rule-based control (RBC)
[12,13,8,14], equivalent consumption minimization strategy (ECMS)
[15–20,9], model predictive control (MPC) [21–27], and globally
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optimal contol [22,28,29].
Globally optimal control yields the maximum fuel economy for a

HEV. The globally optimal controller requires knowledge of the re-
ference signal, i.e. the driver-demanded power, over the entire drive-
cycle. Therefore, the globally optimal controller is non-causal. Attempts
to predict the reference signal (make this controller causal) yield un-
certainty [30–32] and result in significantly degraded performance
[33,34]. Therefore, instead of finding the globally optimal solution,
causal EM strategies, that are realizable, have been studied widely in
this field. Causal EM strategies yield a sub-optimal solution for HEVs.
The causal energy managements for HEVs can be divided into two main
groups: EMs designed based on experimental rules/tests (like RBC), and
EMs designed based on optimal control theories (like MPC and ECMS).
There are many different EM strategies in each of these two main ca-
tegories. The EM strategy proposed in this paper is an instantaneous
optimal controller based on ECMS. Therefore, like all causal EM stra-
tegies, the proposed EM strategy is not globally optimal and yields a
sub-optimal solution.

The globally optimal controller can be formed using dynamic pro-
gramming (DP) for HEVs. DP is a numerical approach for finding the

optimal solution in control theory [28]. Extending DP to the problem of
energy management for HEVs requires the full advanced knowledge of
the vehicle speed and the road conditions. Due to lack of this prior
information, DP is mostly employed for simulations to evaluate the
performance of other EM strategies [35].

In the automotive industry, RBC is the most popular EM strategy
[13,36]. RBC is realized by a state machine or an if-else structure.
Therefore, designing RBC is an intuitive expert level procedure with
straight forward implementation. However, tuning the thresholds for
the rules of the state machine or the if-else structure requires extensive
simulations and experimental tests on the vehicle [13]. In addition,
different studies show the performance of RBC is poor in comparison
with optimal EM strategies like DP, MPC, or ECMS [6,9,24,37]. To
improve the RBC performance, an state-of-the-art approach is to extract
the rules from stochastic DP [12,14]. However, gathering data for the
stochastic DP and then extracting the rules are challenging. In addition,
the extracted rules are still dependent on the original database and the
achieved RBC can still perform poorly on a new drivecycle.

In MPC, at each moment a short horizon of driver-demanded power
PD in the future is predicted. Then an optimization algorithm is

Nomenclature

Abbreviations

A-ECMS adaptive ECMS
BSFC brake specific fuel consumption
CESO catch energy-saving opportunities
DP dynamic programming
ECMS equivalent consumption minimization strategy
EM energy management
GPS global positioning system
HEV hybrid electric vehicle
HWFET highway fuel economy test
MPC model predictive control
MPG miles per gallon
SOC state of charge
RBC rule-based control
SI spark ignition
UDDS urban dynamometer driving schedule

Symbols

λ ECMS equivalent factor [–]
t time [s]
U space of the admissible controls
ueom engine only mode control action
ubom battery only mode control action
ucm charging mode control action
uhm hybrid only mode control action
u control actions vector
x state vector
ṁfuel fuel mass flow rate [g/s]
tf final time [s]
PD driver-demanded power on the wheels [W]
Pptr power of powertrain at the wheels [W]
Pbrk friction brake system power [W]
Pem E-machine mechanical power [W]
Pgn generator electrical power [W]
Pbat C, battery pack chemical power [W]
Pbat E, battery pack electrical power [W]
rtrs transmission gear ratio [–]
ibat battery pack current [A]
Vbat oc, battery pack open circuit voltage [V]

Qbat battery pack capacity [A· s]
Qlhv fuel lower heating value [J/s]
SOCL SOC lower constraint [–]
SOCH SOC upper constraint [–]
SOCL

soft SOC lower soft constraint [–]
SOCH

soft SOC upper soft constraint [–]
x1 battery SOC [–]
x2 defined to augment the cost function [–]
x sp

1 target SOC [–]
H Hamiltonian function
η efficiency [–]
Rbat battery internal resistance [Ω]
p costate variable

Subscripts and Superscripts

∗ optimal value
bat battery
blt belt
bom battery only mode
brk brake
chg charge
cm charging mode
D driver demand
dis discharge
e electric energy path
eng engine
em E-machine
eom engine only mode
f fuel energy path
fuel fuel
gn generator
H high
hm hybrid mode
inv1 inverter #1
inv2 inverter #2
L low
lhv lower heating value
min minimum
max maximum
ptr powertrain
trs transmission
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