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a b s t r a c t

An extension to the classical quadrupole method is proposed which allows computing temperature and
heat fluxes anywhere inside a multilayer material containing localized and/or distributed heat sources.
The distributed heat sources are not limited to being uniform in each layer. By using the superposition
principle and through a treatment which depends on the relative position of the heat sources and the
observation point, we get a closed-form analytical expression for the temperature/flux vector which
yields stable results over an arbitrary time scale. This source-sampled quadrupole method is based on the
transfer formulation related to a T-scheme two-port network representation. We propose another
approach based on the impedance formulation related to the same T-scheme two-port network repre-
sentation; it leads to a global impedance matrix formulation which provides first the heat flux vector and
then the temperature vector. Alternatively we also propose an approach based on the admittance
formulation related to a P-scheme two-port network representation with admittances; it leads to a
global admittance matrix formulation which provides first the temperature vector and then the heat flux
vector. Both impedance and admittance matrix formulations are easier to program than the source-
sampled quadrupole method but their computing time is slightly higher. The three proposed methods
are illustrated on two four-layer slabs, one with a uniform heat source distribution in each layer and the
other one with exponential heat source profiles.

� 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

For the computation of temperature and/or heat flux in multi-
layered time-varying linear systems, the quadrupole method (also
known as the two-port network method) is a well appropriate
analytical method. It is based on the fact that the temperature-flux
vectors on both sides of an homogeneous opaque slab are related
through a matrix product involving a 2 � 2 quadrupole matrix [1].
This matrix product involves temperature and heat fluxes in a
transformed space, either the Fourier space if one is interested in
the time-periodic regime, or the Laplace space if one is interested in
the transient regime. Multiplying together the quadrupole matrices
corresponding to each layer of a multilayer system yields the global
quadrupole matrix of the stack which relates temperature-flux
vectors on both sides of it. Then, by taking into account the
boundary conditions and finally by performing a Fourier inversion,
resp. a Laplace inversion, one gets the requested external

temperatures or fluxes. Internal temperatures and fluxes can be
computed accordingly by multiplying the temperature-flux vector
obtained previously at one external surface by the quadrupole
corresponding to the subsystem extending from this surface to the
requested depth. This is the “natural” approach, which however
presents some drawbacks, as will be seen later.

Fundamentals of the quadrupole method together with
numerous applications are described in Ref. [2]. Since the first
presentation of the quadrupole method for one-dimensional
transfer in Ref. [1] a large number of applications were published.
They include thermal characterization [3e7] non destructive
testing [8e10] heat transfer analysis in buildings [11e13], and in
electronic systems [14], for most recent.

The quadrupole method can also be used for multidimensional
heat transfer analysis provided one applies an additional integral
transform which depends on the geometry, the eventual symme-
tries and the boundary conditions: two particular cases are the
Fourier transform for Cartesian geometry and the Hankel transform
for cylindrical geometry [14e21].

For multidimensional heat transfer in heterogeneous media with
one-dimensional variation of thermal properties, a semi-numerical
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general solution was also proposed, based on a semi-gridding
approach [22,23].

An extension to the multiblock multilayer case using matrices of
spectrum conversion was proposed in Refs. [24,25]. This method is
suited to solving heat transfer through power electronic compo-
nents [24,25] and in media containing a non uniform thermal
resistance (non-destructive testing application) [26].

The quadrupole method was also adapted for analysing convec-
tionediffusion problems [27,28] and coupled heat and mass transfer
problems [29]. Water and heat diffusion in soils was also considered
in Ref. [30] where special quadrupoles where developed for taking
into account continuous profiles for thermal and hydraulic proper-
ties. The functional used for describing these profiles led to quad-
rupoles of the same type as those developed in Ref. [31] for
modelling the advective and diffusive transport of a passive solute in
porous media. Quadrupoles for layers showing a linear effusivity
profile were described in Ref. [32]. Moisture transport in soil and
plant was also simulated with tailored quadrupoles in Refs. [33,34].

An upgrade was proposed for addressing the case of materials
containing heat sources [35]; the thermal quadrupole scheme is
then modified through the addition of a tension source and a cur-
rent source [36,2]. The thermal relaxation of an initial non uniform
temperature distribution can also be modelled by considering a
distribution of specific internal heat sources. Thermal quadrupoles
with internal heat sources were considered for modelling a laser
photothermal radiometry experiment on a semitransparent sample
[37e39], heat transfer within monolithic solid-state microcoolers
[40], heat dissipation in the soft starter of an induction motor [14],
microchannel reactors [27], moisture and heat diffusion in soils
[30,34].

Although being elegant, the quadrupole method faces some
drawbacks: numerical instabilities and overflows may occur when
computation is attempted for a time value being small with respect
to the higher diffusion time of the layers, i.e. t << maxðl2i =aiÞ,
where li is thickness and ai is diffusivity of layer i. These peculiar-
ities are due to the presence of hyperbolic functions with too high
arguments. A well known remedy consists in factorizing each
quadrupole matrix by the corresponding exponential function of
positive argument [41]: for a single layer with heat sources at both
surfaces and with a uniform internal source, all these exponential
vanish in the temperature expression at front and rear face of the
layer (only remain exponential functions of negative argument at
the numerator). Temperature can then be calculated with high
precision over an arbitrary time scale. For a multilayer with internal
heat sources, a global matrix approach was proposed in Ref. [41]
which also leads to a solution deprived from exponential func-
tions with positive arguments. It is however restricted to uniform
heat sources in each layer. It also implies an intermediate step with
the computation of a series of fictitious temperatures before getting
the vector of interface temperatures.

We will address the problem of modelling the transient thermal
evolution of a 1Dmultilayer submitted to internal and external heat
sources, independent of temperature. We will present three alter-
native methods sharing the following properties:

- they are robust: temperature and flux can be calculated at any
depth over an arbitrary time scale;

- they don’t require the computation of fictitious temperatures;
- the distributed heat sources are not restricted to being constant
in each layer.

Nomenclature

a thermal diffusivity m2 s�1

Ai, Bi, Ci, Di quadrupole coefficients (Eq. (2))
b thermal effusivity W s1/2 m�2 K�1

r density kg m�3

C heat capacity W s kg�1 K�1

g heat source power density W m�3

G Laplace transform of heat source power density W s m
�3

h heat transfer coefficient W m�2 K�1

f frequency s�1

l thickness m
M quadrupole matrix
n number of (finite) layers
p Laplace variable s�1

R Thermal resistance W�1 m2 K
S source vector of the quadrupole
t time s
T, T0 temperature; initial temperature K
Y admittance
Y admittance matrix for a layer
Y admittance matrix for a multilayer
Y1, Y2, Y3 thermal admittances of P-network
z space location (1D) m
Z impedance
Z impedance matrix for a layer
Z impedance matrix for a multilayer
Z1, Z2, Z3 thermal impedances of T-network
b absorption coefficient m�1

L common denominator (Eq. (14))

4 heat flux density W m�2

f transform of heat flux density W s m�2

l thermal conductivity W m�1 K�1

m thermal penetration depth m
q Laplace transform of temperature K s
Q tension source of the quadrupole K s
F current source of the quadrupole W s m�2

u pulsation rad s�1

Superscript
b relative to backward transfer formulation
f relative to forward transfer formulation
Y relative to admittance quadrupole formulation
Z relative to impedance quadrupole formulation
~Ai after division of Ai by exp(li/mi)
* localized (heat source)
þ right from a localized heat source (for heat flux

density)
� left from of a localized heat source (for heat flux

density)

Subscript
F front face (left on Fig. 1)
i layer or interface number (source position)
j layer or interface number (observation position)
k, m after quadrupole multiplication from layer k to layer m
in input
out output
R rear face (right on Fig. 1)
r reflective
t transmissive
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