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H I G H L I G H T S

• Multi-resolution data are used to forecast wind power by multi-kernel regression.

• Mixture of Gaussians is applied to model the complex wind power forecasting errors.

• The number of Gaussian components in a mixture of Gaussians is determined by stick breaking construction.

• The derived model can output the deterministic and probabilistic forecasts simultaneously.
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A B S T R A C T

Accurate wind power forecasting has great practical significance for the safe and economical operation of power
systems. In reality, wind power data are recorded at high time resolution (5 s, etc.). The original high-resolution
data are averaged to produce the low-resolution time series (10 min, etc.) used in wind power forecasts.
Therefore, the current wind power forecasting models neglect certain information in the high-resolution data.
Moreover, the common Gaussian assumption used for the error term in the current wind power forecasting
model is not consistent with the real, complex wind power forecasting error distribution. In this paper, an
adaptive robust multi-kernel regression model is proposed to deal with the two disadvantages mentioned above.
First, a multi-kernel regression model is constructed to process the multi-resolution wind power data. Second, a
Gaussian mixture model is employed to model the complex wind power forecasting error. Finally, a variational
Bayesian method is introduced to optimize the proposed model and to cause the simultaneous output of both the
deterministic and probabilistic forecasts. Two case studies have been conducted on real wind power data from
Chinese wind farms. The results show that the proposed model provides more accurate deterministic forecasts
and more useful probabilistic forecasts, and has great potential for practical application in power systems.

1. Introduction

The demand for energy increases rapidly with economic develop-
ment. Considering the limited reserves of conventional resources (e.g.,
coal, oil, and gas) and the environmental pollution caused by their
consumption, a growing number of countries have begun to explore
renewable alternatives. Among the various renewable resources (e.g.,
solar and geothermal energy), wind energy is receiving extensive at-
tention in the world due to its clean, inexhaustible, inexpensive, and
widely distributed nature [1].

However, as wind power penetration increases, the high volatility
and intermittency of wind power will challenge the stability of power
system operations [2]. Wind volatility is primarily manifested as large-

scale wind power ramping events (WPREs), while strong intermittency
is manifested as difficulty in accurate wind power forecasting. There-
fore, accurate wind power and wind power ramping event forecasting
are essential, as they can enable adjustments to wind power advance
scheduling, improve power quality, and reduce both the operational
costs and the reserve capacity of the power system, etc. [3,4].

WPREs are sudden changes in wind power within a short period of
time [4]. Currently, WPRE forecasting approaches are divided into two
categories: direct models and indirect models [5]. In [5], a hybrid
model based on orthogonal tests and a SVM (support vector machine)
employed historical wind power ramp series and meteorological in-
formation to make direct WPRE forecasts. The authors of [4] used a
reservoir computing-based model to realize binary (ramp/non-ramp)
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prediction. Cui et al. proposed an indirect WPRE forecasting model that
used a neural network to forecast wind power for different scenarios,
and then extracted information about WPREs from the wind power
forecasting results mentioned above [6]. Similarly, the Wind Forecast
Improvement Project, which was formed to enhance short-term wind
power forecasting accuracy, extracted WPREs from actual and fore-
casted wind power time series using an optimized swinging door al-
gorithm [7]. Accurate wind power forecasting is important for indirect
WPRE forecasting models.

A number of models have been proposed recently to enhance wind
power forecasting accuracy. These models can be categorized in terms
of modeling theory into four types: physical models, statistical models,
learning models, and hybrid models [8]. Physical models use physical
quantities to calculate final forecasts of wind speed and wind power.
The physical quantities used in these models include location in-
formation and meteorological factors provided by numerical weather
prediction, such as wind speed, wind direction, and barometric pressure
[9,10]. For statistical models, only historical wind power information is
used. ARMA (autoregressive and moving average model) and ARIMA
(autoregressive integrated moving average model), as well as frac-
tional-ARIMA [11] and Hammerstein autoregressive model [12], are
commonly applied to generate wind speed/wind power forecasts. With
the rapid development of machine learning technologies, various
learning methods such as ANNs (artificial neural networks), SVM, GP
(Gaussian process), and fuzzy logic methods are widely employed to
forecast wind power [13]. Recently, deep neural networks have also
been used in wind energy forecasting [14,15]. However, due to the
limited performance of the single models listed above, hybrid models,
which combine different techniques, have become increasingly popular
for forecasting wind power. Model combination is conducted in the
preprocessing or post-processing stages; the forecasting performance of
both types of hybrid methods is generally enhanced [13]. For instance,
in the preprocessing stage, input data is sometimes handled by signal
processing methods such as wavelet transform and empirical mode
decomposition, while, in the post-processing phase, the results of sev-
eral predictors are taken into consideration [13]. Unfortunately, the
existing deterministic forecasting models do not always generate ac-
curate forecasts due to the following issues.

First, information will be lost when transforming the collected wind
power data into the required timescale. The collected wind power data
are recorded at a high time resolution, such as 5-s [16]. 10-min, 30-min,
1-h, or even 1-day forecasts are often required for power system op-
eration (including power system management and maintenance sche-
duling, etc.) [17]. The representative point in the required timescale is
calculated by averaging, after which a 10-min or 30-min resolution
time series can be obtained [16,18]. Therefore, fluctuations in the high-
resolution data will be lost during data averaging to the required
timescale.

Second, there is the inconsistency between the real wind power

forecasting error and the error distribution assumption used in fore-
casting models. Recent studies have reported that the wind power
forecasting error obeys not a Gaussian distribution, but a Beta dis-
tribution [19], a mixed distribution based on Laplace and normal dis-
tributions [20], a Levy alpha-stable distribution [21], etc. The findings
above are inconsistent with the underlying Gaussian error distribution
assumed in many current forecasting models, such as the LSSVM (least
squares support vector machine) and the GP. Therefore, a proper and
general error distribution assumption should be used in wind power
forecasting models.

With the integration of large-scale wind power into the power grid,
the estimation of power generation uncertainty becomes increasingly
important and plays significant roles in risk assessment and risk deci-
sion-making in power system operation [22]. Further, large-scale wind
power integration requires distribution information and PIs (prediction
intervals) for the forecasted wind power [23]. Providing various aspects
of power forecasts is equally important when integrating large-scale
wind energy into the power grid [24,25]. Current uncertainty fore-
casting technologies require further research when compared with the
relatively mature deterministic forecasting models [24].

QR (quantile regression) is the most commonly used model for wind
power uncertainty analysis [26–28]. The advantages of QR include no
additional assumptions about the distribution shape and the flexible
inclusion of predictive information [23]. However, QR also has dis-
advantages such as discontinuity in the resulting PDF (probability
density function) for each forecast, which may be time-consuming for
the requirement of overall quantile distribution [29].

Recently, LUBE (lower upper bound estimation) ANN models have
been used successfully for PI construction [30,31]; these models feature
theoretical approximation for any continuous nonlinear functions and
possess fine generalization ability. LUBE models make no assumptions
about data distribution and avoid the calculation of matrices such as
Jacobin and Hessian matrices [31]. Moreover, LUBE models are con-
structed using machine-learning methods [32]. However, the accuracy
of the PIs constructed by LUBE models depends largely on the objective
function; also, the PDF resulting from each forecast is discontinuous.

Bayesian models offer another way to obtain PIs [25,29,33]. When
compared with the interval forecasting models discussed above, Baye-
sian models have the distinct advantage of producing continuous PDFs,
which can produce interval forecasts at any confidence level. The pri-
mary challenge in Bayesian models lies in the selection of optimal prior
variable distributions. However, the error term is assumed have a
Gaussian distribution in the current Bayesian models, which is incon-
sistent with the complex wind power forecasting error observed in
reality.

In this paper, a novel wind power forecasting model using ARMKR
(adaptive robust multi-kernel regression) is proposed to overcome the
disadvantages in the current deterministic and probabilistic forecasting
models. First, high-resolution wind power data recorded every 5-s

Abbreviations

ARMA autoregressive and moving average model
ARIMA autoregressive integrated moving average model
ANNs artificial neural networks
ARMKR adaptive robust multi-kernel regression
ARSKR adaptive robust single-kernel regression
ACE average coverage error
CWC coverage width-based criterion
GP Gaussian process
GMM Gaussian mixture model
LUBE lower upper bound estimation
LSSVM least squares support vector machine
MMD maximum mean discrepancy

MMAPE modified version of the mean absolute percentage error
NMAE normalized mean absolute error
NRMSE normalized root mean square error
PIs prediction intervals
PDF probability density function
PACF partial autocorrelation function
PICP PI coverage probability
PINC PI nominal confidence level
PINAW PI normalized average width
QR quantile regression
RVM relevance vector machine
SVM support vector machine
WPREs wind power ramping events
WS Winkler score

Y. Wang et al. Applied Energy xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/6681803

Download Persian Version:

https://daneshyari.com/article/6681803

Daneshyari.com

https://daneshyari.com/en/article/6681803
https://daneshyari.com/article/6681803
https://daneshyari.com

