
A novel parameter and state-of-charge determining method of lithium-
ion battery for electric vehicles

Zhirun Li a, Rui Xiong a,⇑, Hao Mu a, Hongwen He a, Chun Wang a,b

aCollaborative Innovation Center of Electric Vehicles in Beijing, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
b School of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000, Sichuan, China

h i g h l i g h t s

� The improved method is accurate and stable when the sample interval is long.
� The LMS algorithm, which requires less computational capability, is made effective by the improved method.
� An HIL test is conducted to verify the accuracy of the improved method.
� The improved method shows high accuracy and stability in the determination of the SoC.
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a b s t r a c t

To improve the estimation accuracy of a battery’s inner state for a battery management system, an
improved online model-based parameter identification algorithm is proposed. To reduce the computa-
tion cost, the existing methods regard the open circuit voltage over a certain time as a constant value.
However, the battery state-of-charge (SoC) estimation error with the traditional method will deteriorate
with larger sampling intervals. Compared with the existing parameter identification method, a new
online estimation method is proposed, and both recursive least squares (RLS) and least mean square
(LMS) algorithms are employed and compared systematically. The LMS algorithm, which requires less
computational capability and storage space but performs worse than the RLS algorithm, is also invalid
for the wide sampling interval in the traditional method. The improved method using LMS can maintain
the maximum SoC estimation error at less than 10%. The simulation results show that the proposed
approach can accurately identify the model parameters within 5% SoC estimation error. Finally, a
hardware-in-the-loop validation experiment is carried out to prove the accuracy and superiority of the
improved method.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Electric vehicle technology is a good choice to solve the
problems of energy shortage and environmental pollution. The
battery pack, which plays a critical role in electric vehicles, is also
the critical technological bottleneck of electric vehicles. It
determines the performance of the electric vehicle, influencing
economy, power, reliability and other aspects of performance
[1,2]. The state-of-charge (SoC), which reflects the usable energy
of the battery pack, is vital for the energy control and state
estimation of the EVs (electric vehicles). As a result, the estimation

of the SoC is an important function of the battery management
system (BMS) [3–5].

The existing SoC estimation methods are primarily of two
types: the direct method and the indirect method [6]. The direct
method remains the most popular method today. The direct
method usually uses an ampere-hour integral to obtain the SoC
[7,8]. The advantages of this method include low calculation
requirements and high reliability, although its accuracy is very
poor [9,10]. The lack of accuracy is caused by two reasons, the
accuracy of the electric current cannot be guaranteed because of
the sensor limit, and the initial SoC is difficult to obtain [11,12].

To address this inadequacy, some studies put forward indirect
methods. Indirect methods obtain the SoC according to the bat-
tery’s intrinsic relationship between the SOC and some electrical
parameters, usually the open-circuit voltage (OCV) [13–15]. During
the battery charging or discharging process, there is always a
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one-to-one relationship between the OCV and the SoC, so we can
build an OCV-SoC table. The problem is transformed into how to
obtain the OCV. Measurement of the OCV is difficult because it is
infeasible to wait a long time for the battery to reach a steady state
[16–18]. To solve this problem, some studies have built equivalent
circuit models, which consist of voltage sources, resistors and
capacitors to describe the operational performance of the battery
[19,20]. The OCV can be identified as a parameter of the equivalent
circuit model [21–23].

The indirect methods include two types: the offline estimation
method and the online estimation method [24,25]. The offline esti-
mation methods generally use optimization algorithms such as the
extended Kalman filter (EKF), a genetic algorithm (GA), particle
swarm optimization (PSO) or other methods to identify the battery
parameter [26–29]. Offline methods can provide good results, but
they requires too many calculations, taking dozens of hours to
complete a single time and making it difficult to adopt in EVs
[30,31]. Conversely, the online estimation method is a widely
applied method. The online estimation method can track the state
of the battery in real time [2,32,33]. In addition, it requires less
time to perform the calculations and occupies only a small amount
of memory. Ref. [34] puts forward a model-based, online estima-
tion method for the SOC and the OCV. This method is widely used
and accepted by scholars. First, an equivalent circuit model with n
RC networks is used to model the polarization characteristic and
the dynamic behavior of the battery. Generally, the estimation
results have the best accuracy when there are fewer than two RC
networks. Next, the corresponding equations are built to describe
the electric behavior of the battery. A Laplace transformation and
a bilinear transformation are used for system discretization. The
recursive least squares (RLS) method is used to identify the battery
parameters, including the open-circuit voltage (OCV). Finally, the
SoC can be obtained from the OCV-SoC lookup table, which is built
based on experimental data.

The traditional method can obtain a satisfactory result when
the system sampling interval is small, but there is a critical short-
coming. The traditional method assumes the change in the OCV
between two adjacent sample points is negligible. Therefore, the
traditional method supposes oSoC/ot � 0 and the OCV of two adja-
cent sample points are equal. This supposition is reasonable with a
small sampling interval. However, if the sampling interval is large,
the change in the OCV is not small enough to be ignored. As a
result, this traditional method works poorly with a moderate or a
large sampling interval. Experiments show that the maximum
SoC error is greater than 10% when the sampling interval is only
5 s. It is unrealistic and wasteful for EVs to adopt a very short sam-
pling interval. The sampling interval is usually more than 5 s in
practical applications.

Based on the previous analysis, this paper proposes an
improved online estimation method that will address the issues
of the traditional method. In this improved method, the supposi-
tion that the OCV is unchanging has been abandoned. The
improved method has almost no difference from the traditional
method in commonly encountered conditions, but it does not gen-
erate large peaks as can occur with the traditional method. In addi-
tion, the new method has astringency and will approach the
correct result rapidly if there is a false initial value or signal distur-
bance. It also has better stability and will not generate large mini
waves on the second time scale as occurs with the traditional
method.

The remainder of this paper is organized as follows. Section 2
discusses the improved method in detail and proves its astringency
and reliability. A verifying experiment is carried out based on a
dynamic stress test (DST) in Section 3. The results and errors of
the improved method are presented and discussed in Section 4. A
hardware-in-the-loop validation test is conducted to prove the

superiority of the improved method in Section 5. Finally, conclu-
sions are drawn in Section 6.

2. The traditional method and the improved method

2.1. The traditional method

To model the polarization characteristic and the dynamic
behavior of the battery, an equivalent circuit model with n RC net-
works is built. Parameter n represents the number of RC networks.
If the model is too complex, it will have reduced accuracy. There-
fore, n is usually less than 5. When n = 1, the equivalent circuit
model is reduced to the Rint model, and when n = 2, the equivalent
circuit model is reduced to the Thevenin model. According to the
experimental verification, in most cases, the model has the best
accuracy when n = 1 or n = 2. Consequently, this paper uses the
Thevenin model, shown in Fig. 1, to simulate the behavior of the
battery.

Eqs. (1) and (2) are built to describe the electrical behavior of
the Rint model based on Kirchhoff’s laws.

Uocv ¼ Ut þ iLRo þ U1 ð1Þ

iL ¼ C1
dU1

dt
þ U1

R1
ð2Þ

where UOCV is the OCV, Ut is the terminal voltage, iL is the load cur-
rent, R0 is the equivalent ohmic resistance, U1 is the voltage across
the RC network, R1 is the resistance in the RC network, and C1 is the
capacitor in the RC network.

To discretize the continuous time system, a Laplace transforma-
tion and a bilinear transformation are carried out based on Eqs. (1)
and (2), as shown in Table 1.

iL

OCV 

R0

R1

C1

+
Ut

-

Fig. 1. The schematic of the Thevenin model.

Table 1
The mathematical derivation process of the continuous time system discretization.

I. Laplace transform
iLðsÞ ¼ C1sU1ðsÞ þ 1

R1
U1ðsÞ (3)

U1ðsÞ ¼ iLðsÞ � R1
1þR1C1s

(4)

UOCV ðsÞ � UtðsÞ ¼ iLðsÞ � R0 þ R1
1þR1C1s

� �
(5)

II. Bilinear transformation

s ¼ 2
T � 1�z�1

1þz�1
(6)

UOCV ðz�1Þ � Utðz�1Þ ¼ iLðz�1Þ �
R0TþR1 Tþ2R0R1C1

Tþ2R1C1
þR0TþR1 T�2R0R1C1

Tþ2R1C1
z�1

1þT�2R1C1
Tþ2R1C1

z�1

(7)

III. Inverse Z-transform

Define a1 ¼ � T�2R1C1
Tþ2R1C1

, a2 ¼ � R0TþR1Tþ2R0R1C1
Tþ2R1C1

and a3 ¼ � R0TþR1T�2R0R1C1
Tþ2R1C1

UtðkÞ ¼ UOCV ðkÞ � a1UOCV ðk� 1Þ þ a1Utðk� 1Þ þ a2iLðkÞ þ a3iLðk� 1Þ (8)
Define MðkÞ ¼ UOCV ðkÞ � a1UOCV ðk� 1Þ
UtðkÞ ¼ MðkÞ þ a1Utðk� 1Þ þ a2iLðkÞ þ a3iLðk� 1Þ (9)
IV. Transform into vector notation
Define uðkÞ ¼ ½1 Utðk� 1Þ iLðkÞ iLðk� 1Þ � and

hðkÞ ¼ ½MðkÞ a1 a2 a3 �T
UtðkÞ ¼ uðkÞhðkÞ (10)
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