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a b s t r a c t

In this paper new results on linear viscoelastic thermal Marangoni convection are presented. The
constitutive equation assumed is that of the Maxwell viscoelastic fluid. The competition between sta-
tionary and oscillatory convection is shown by means of plots of codimension-two points where the
corresponding critical Marangoni numbers are the same. The variation of these points is investigated in a
wide range of magnitudes of the thickness and thermal conductivity of the wall. Also, a discussion is
given about the dependence they have on the Biot number of the fluid-atmosphere interface. Besides, it
is shown how the range of the viscoelastic relaxation time corresponding to this points is modified by the
Prandtl number.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Thin liquid films stability has important industrial applications.
The problem of surface coating is one of them. The finishing of the
coating is intimately related with the thermal Marangoni stability.
The fractures found after solidification of the layer are strongly
related with the Marangoni convection cells. The phenomenon has
been investigated for Newtonian fluids since many years ago.
Pearson [1] investigates the stationary stability of a thin layer with
flat free surface considering different thermal boundary conditions.
Scriven and Sternling [2] investigates for the first time the effect of
free surface deformability. Takashima [3] considers the stationary
free surface deformation of the layer and Takashima [4] includes
the time dependence of the problem taking into account for the
first time the effects of gravity in both papers. Mctaggart [5] studies
the double diffusive problem of Marangoni convection when the
free surface is flat. The Marangoni convection is investigated from a
boundary layer point of view by Christopher and Wang [6].
Emphasis is put on the influence the Prandtl number has on heat
transfer. Two free deformable surfaces can be present as in Ref. [7].

Convection in a layer with a free deformable surface and a
deformable membrane is investigated in Ref. [8]. When the tem-
perature gradient across the layer is large it is important to take into
account the temperature variation of viscosity as in Slavtchev and
Ouzounov [9] and Kalitzova-Kurteva et al. [10] for stationary con-
vection with deformable free surface and in Slavtchev et al. [11] for
oscillatory convection and deformable free surface. The control of
Marangoni convection is important to avoid fractures in the solid-
ification process as is investigated by Bau [12] and Or et al. [13]. In
particular, Kechil and Hashim [14] assume free surface deformation
and include viscosity dependence on temperature. An application
to microchannels is presented in the paper by Pendse and Esmaeeli
[15] who investigate the Marangoni flow in two superposed fluids
when a spatially periodic temperature is applied to the wall. It is
shown that the competition between thermal and hydrodynamic
effects is reflected in the flow strength when the relative thickness
of the layers is varied.

In applications the liquid usually presents a non Newtonian
behavior. One important property is the viscoelasticity of the fluid
(see Bird et al. [22]). In natural convection the viscoelastic linear
and nonlinear effects have been investigated, for example, by
Martínez-Mardones and colleagues [16e20]. In particular, in
Ref. [17] one of the goals is to find the codimension-two point
between stationary and oscillatory instability to investigate the
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possibility of nonlinear traveling and stationary waves. For a review
of this problem see D�avalos-Orozco [21].

Viscoelasticity have been taken into account in Marangoni
convection by a number of authors. Getachew and Rosenblat [23]
investigate the problem of a flat free surface assuming a very
good conducting wall. Their main concern is to calculate the points
where the curves of criticality of stationary convection intersect
those of oscillatory viscoelastic convection. These intersections are
called codimension-two points (see Ref. [17]). Wilson [24] in-
vestigates the instability growth rates of viscoelastic fluids with
particular interest on slightly supercritical situations. Siddheshwar
et al. [25], for temperature dependent viscosity, explore the oscil-
latory Marangoni instability of different non Newtonian fluids, in
particular, the Maxwell fluid. They also assume a variety of thermal
boundary conditions.

From the point of view of the linear equations, the stationary
and oscillatory Marangoni convections differ not only by the
absence of the time derivative in the stationary problem, but also
by the presence of the Prandtl number in the oscillatory case.
Physically, in stationary Marangoni convection the fluid particles
are able to describe closed trajectories. This is due to the shear flow
produced by the thermal perturbations which, from the wall, reach
the free surface and modify the temperature dependent surface
tension. If hot particles are continuously able to reach the free
surface the cellular flow can be sustained heating from the wall. In
oscillatory convection, all particles move at once in trajectories due
to the shear flow produced by the weakening of surface tension.
Nevertheless, they are not able to complete closed trajectories
when the fluid has relatively high thermal diffusivity. In non
dimensional form this is determined by the Prandtl number, that is,
the ratio of the mass diffusivity (kinematic viscosity) over the heat
diffusivity. Under these conditions, the fluid particle cools easily
and it is not able to reinforce the shear flow by the weakening of
surface tension. Consequently, the strong surface tension of the
cold regions of the free surface dominate and the surface shear
works in the opposite direction making all the particles in the bulk
to go backwards to the wall where they are heated again to repeat
the same process.

Therefore, depending on the Prandtl number the Marangoni
convection may be stationary or oscillatory, as will be shown
presently. However, it is well known that the linear Marangoni
convection of a Newtonian fluid layer with a flat free surface only
can be stationary (see Ref. [26]). If the free surface of a Newtonian
fluid layer is allowed to deform, thermocapillary oscillations may
appear first [2,4]. However, the case of a viscoelastic fluid layer with
a flat free surface is different. The new degrees of freedom of the
macromolecules added to the liquid motion by means of the
constitutive equations, allow oscillatory Marangoni convection to
appear for a smaller temperature gradient than that of the New-
tonian fluid for some magnitudes of the Prandtl number and
relaxation times [23].

The effect of a thickwall inMarangoni convection is investigated
by Takashima [27]. The simultaneous effect of gravity and ther-
mocapillarity is investigated by Yang [28] including a wall with
finite thickness. A temperature dependent viscosity is assumed by
Char and Chen [29] in a liquid layer on a thick slab. A deformable
free surface is assumed by Abidin et al. [30] in the presence of
buoyancy effects. The heat generation and properties of a thick wall
are considered in thermocapillary convection by Arifin and Bachok
[31]. The non uniformity of the basic temperature gradient may
have important consequences on the instability. This is taken into
account by Shivakumara et al. [32] including a thick slab. The
deformability of the free surface is assumed in a layer on a thick
wall by Gangadharaiah [33].

The results of thermocapillary convection including a thick
slab are more realistic than those of an infinitely good conducting
wall. This effect has also been investigated in natural convection
of a Maxwell viscoelastic fluid by P�erez-Reyes and D�avalos-
Orozco [34]. There it is shown that for certain magnitudes of the
Prandtl number a codimension-two point is found where sta-
tionary and oscillatory convection compete to be the first un-
stable one for a range of values of the non dimensional relaxation
time (Weissenberg number). An important difference between
this paper and ref. [34] for natural convection is that here the
results are only focused on the codimension-two points and not
on the curves of criticality. However, the curves of criticality have

Nomenclature

a wave number
ac critical wave number
Bis free surface-atmosphere Biot number
Biw wall Biot number
d dw/df
df fluid layer thickness
dw wall thickness
e shear rate tensor
Hh heat transfer coefficient
Ma Marangoni number
Mac critical Marangoni number
n! free surface normal vector
P pressure
p pressure perturbation
Pr Prandtl number
T temperature
T liquid temperature
Tw wall temperature
Th temperature profile
u perturbation velocity x-component

V
!

fluid velocity vector
v perturbation velocity y-component
w perturbation velocity z-component

Greek
b temperature gradient
G surface tension
h dynamic viscosity
q temperature perturbation
k fluid thermal diffusivity
kw wall thermal diffusivity
l adimensional relaxation time (Weissenberg number)
lT relaxation time
m viscoelastic parameter
n kinematic viscosity
r fluid density
s oscillation frequency
t shear stress tensor
c cf/cw
cf fluid thermal conductivity
cw wall thermal conductivity
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