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HIGHLIGHTS

« Study on temperature, current, aging dependencies of maximum available energy.

« Study on the various factors dependencies of relationships between SOE and SOC.

« A quantitative relationship between SOE and SOC is proposed for SOE estimation.

« Estimate maximum available energy by means of moving-window energy-integral.
« The robustness and feasibility of the proposed approaches are systematic evaluated.
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The battery state of energy (SOE) allows a direct determination of the ratio between the remaining and
maximum available energy of a battery, which is critical for energy optimization and management in
energy storage systems. In this paper, the ambient temperature, battery discharge/charge current rate
and cell aging level dependencies of battery maximum available energy and SOE are comprehensively

analyzed. An explicit quantitative relationship between SOE and state of charge (SOC) for LiMn,0,4 battery
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cells is proposed for SOE estimation, and a moving-window energy-integral technique is incorporated to
estimate battery maximum available energy. Experimental results show that the proposed approaches
can estimate battery maximum available energy and SOE with high precision. The robustness of the pro-
posed approaches against various operation conditions and cell aging levels is systematically evaluated.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Lithium-ion batteries have many desirable merits such as high
energy density, light weight and long cycle life, and are widely
developed as energy storage devices in smart grids and electric
vehicles [1,2], etc. To meet the application power and energy
demands, a battery system usually contains hundreds, even thou-
sands of cells connected in series and parallel. To ensure safe and
reliable operation, an effective battery management system
(BMS) is required to monitor and control these cells. Much of the
BMS functionalities, such as the state of charge (SOC) estimation,
state of health estimation, cell monitoring and balancing tech-
niques [3-8], have been sophisticatedly developed for applications.
Nevertheless, due to the nonlinear battery characteristics and
unpredictable operating conditions, accurate and reliable battery
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state of energy (SOE) and maximum available energy estimations
still pose significant challenges.

Traditionally, the SOC is regarded as an indicator of battery
available energy. A wide variety of approaches for SOC estimation
has been reported in recent literature [2,9-19], and remarkable
results have been achieved on novel SOC estimation methods
and improving the estimated accuracy. For example, the
proportional-integral (PI) observer [11], Luenberger observer
[12,13], Sliding-mode observer [14,15] and Kalman-filter-based
algorithms [2,16-19] were employed in model-based SOC estima-
tion methods to obtain estimated results of high accuracy. Defined
as the ratio of the remaining charge stored in a battery to its full
capacity, however, SOC actually indicates the state of available
capacity rather than the state of available energy. Mamadou
et al. [20,21] introduced a new criterion, state of energy (SOE),
for battery energetic performances evaluation. SOE allows a direct
determination of the ratio of battery remaining energy to its max-
imum available energy, which is critical for energy optimization
and management in energy storage systems.
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Compared with the SOC estimation approaches, there are few
studies report the systematic research for SOE estimation. Refs.
[22,23] presented SOE estimation methods based on Neural Net-
work, which treats the target battery as a “black-box” system
and needs a great number of sample data to train the network
parameters. The main disadvantage of this method is that the esti-
mation errors are strongly dependent on the training data. In
[24,25], an adaptive unscented Kalman filter algorithm and the
relationship between the SOE and open circuit voltage (OCV) were
employed in the model-based SOE estimation approaches. In [26],
the particle filter and a battery model are utilized to develop a
method for joint estimation of the SOE and the SOC, and the
robustness of the method has been verified under dynamic tem-
perature conditions. He et al. [27] employed a Gaussian model ori-
ented battery model and proposed a data-driven estimator with a
central difference Kalman filter algorithm for SOE estimation, and
the approach was evaluated by two kinds of batteries including
LiFePO, and LiMnyO4 cells. Although these SOE estimation
approaches are able to achieve acceptable accuracy, the complex
algorithms produce a heavy computational burden on the micro-
processor with limited computation capability within BMSs.

Besides, a common drawback of these SOE estimation methods
is that they fail to achieve desirable predictions against various
operating conditions during battery aging processes. The trajectory
of the neural network parameters or battery model parameters
cannot be fully described within a limited number of experiments
[27]. Various battery operating conditions and cell aging levels
with pre-set parameters may lead to inaccurate SOE estimated
results. It is also noted that the above-mentioned battery available
energy studies focus just on the SOE estimation. Unfortunately,
there are very few studies involving the estimation of battery max-
imum available energy (i.e. battery actual energy). Since the bat-
tery maximum available energy is strongly related to the battery
operating conditions [22], it is necessary to systematically study
the effects of ambient temperature, current rate, and aging level
in order to estimate the SOE and maximum available energy more
accurately, and further improve the robustness of estimation
approaches against uncertain operating conditions.

To implement this work, a battery test bench was developed,
and the characteristics of LiMn,0,4 battery cells with a nominal
capacity of 90 A h were tested under different aging levels, current
rates, and ambient temperatures. The tests cover a broad aging
level range from 92 A h to 69.5 A h, a wide temperature range from
10°C to 40 °C and a commonly used current rate range from 1/3 C
to 1 C. Based on the test data, the relationships between SOE and
SOC under various operating conditions are systematically ana-
lyzed and quantified for SOE estimation. A moving-window
energy-integral technique is incorporated to estimate the battery
maximum available energy. The robustness and feasibility of the
proposed approaches are validated in different operating condition
tests during battery aging processes.

Theremainder of the paper is arranged as follows: Section 2 intro-
duces the battery test bench and analyzes the dependencies of bat-
tery available energy and SOE on the temperature, current and cell
aging level. Section 3 presents the proposed algorithms of battery
SOE and maximum available energy estimations. The experimental
results and evaluation of the proposed approaches are reported in
Section 4, followed by the conclusions and future work in Section 5.

2. Battery experiments and results

2.1. Battery test bench

The LiMn,04 cells with a nominal capacity of 90 A h were used
to investigate the battery energy characteristics at various

experimental conditions of different ambient temperatures, cur-
rent rates, and cell aging levels. A battery test bench was set up
to obtain battery characterization experimental data, as shown in
Fig. 1.

The battery test bench is composed of a battery charger/dis-
charger, a host computer, a programmable temperature chamber
and Lithium-ion battery cells. The battery charger/discharger func-
tions to charge or discharge battery cells according to preset load-
ing profiles and its voltage and current measurement accuracy is
0.05% full scale. The host computer is used to set the loading pro-
files and control the battery charger/discharger through the TCP/IP
communications. It is also used to record a set of real-time battery
variables, such as battery terminal voltage, loading current, and
charge/discharge energy. The programmable temperature chamber
can simulate various ambient temperatures and is used to control
the battery operated under the designed temperatures.

2.2. Temperature, current and aging level dependencies of battery
maximum available energy

In order to investigate the battery maximum available energy
with different currents at various ambient temperatures, the bat-
tery cells were loaded with the discharge current rates of C/3,
2 C/3,C/2 and 1 C at temperatures of 10 °C, 25 °C and 40 °C, respec-
tively. At each temperature, the battery cells were firstly charged
with a preset constant current to the upper limit voltage 4.2 V fol-
lowed by a constant voltage charge at 4.2 V until C/20 cutoff. Then,
there was a rest time for 1 h followed by the preset constant cur-
rent discharge to the lower limit voltage 3 V. After that, the battery
was given a rest for 1 h and the procedure was carried out repeat-
edly. During the battery discharge processes, the maximum avail-
able energy results with different currents at various temperatures
are shown in Fig. 2.

From Fig. 2, it can be found that the battery maximum available
energy presents a change with different currents at various tem-
peratures. At the same ambient temperature, the available energy
appears a decreasing trend with the increasing discharge current
rate. For example, when the discharge current rate was increased
from 1/3 C to 1C, the available energy dropped from 324.8 Wh
to 315.1 W h at 10 °C. At various temperatures, when the discharge
current rate is kept at 1/3 C, the maximum available energies are
324.8Wh, 355.1Wh, and 356.5Wh at 10°C, 25°C and 40 °C,
respectively, presenting an increasing trend with the rising
temperature.

To investigate the battery maximum available energy with dif-
ferent currents at various battery cell aging levels, accelerated
aging tests with the charge/discharge current of 1 C at 60 °C were
applied to the battery cell to obtain different cell aging levels
including 92 Ah, 87 Ah, 825Ah, 78 Ah, 745Ah and 69.5Ah,
and at each cell aging level, the battery cell was loaded with the
discharge currents of C/3, C/2, 2 C/3 and 1 C at the room tempera-
ture (25 °C), respectively. The battery maximum available energy
values are plotted in Fig. 3.

In Fig. 3, when the discharge current rate is 1/3 C, the battery
maximum available energy values are 355.1Wh, 331.9Wh,
315.8Wh, 299.0 Wh, 281.9Wh and 261.4Wh at the battery
capacity 92Ah, 87Ah, 825Ah, 785Ah, 74Ah and 69.5Ah,
respectively. The maximum available energy shows similar declin-
ing trends with different discharge current rates such as 1/2C,
2/3 C, and 1 C at different aging levels, indicating that the battery
maximum available energy appears a significant decrease during
battery aging processes.

It can be concluded that the battery maximum available energy
varies with the operating conditions and is greatly related to the
ambient temperature and cell aging level. Accordingly, itis necessary
to develop reliable approaches for accurate battery maximum
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