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Apparently complex flow structures obey to scaling relations that enable to make it viable the study of
their configuration and flow dynamics. This is the case of flow structures that exhibit several branching
levels and are thought to perform optimally.

Here we present scaling relations of diameters and lengths of branching cylindrical channels with
pulsatile flows, and compare them with other relations published in the literature. It is shown that, under
constant global volume of the flow tree, and for zero pulse frequency these scaling relations reduce to
Murrays's law of consecutive diameters. Optimal scaling depends on pulse frequency, distensibility of the
channel walls, and asymmetry of the daughter vessels. In case that in addition to global volume of the
flow tree, the pressure head is also kept constant, a similar scaling law of channel lengths emerges that
holds together with the law of diameter scaling. The effect of channel distensibility is shown to be
somehow important, such that for achieving optimal performance (lowest impedance) channels with
lower relative distensibility must have their diameter increased. Results are compared with those of

other models for the case of some arteries.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Murray's Law [1—3] which states that the “cube of the radius of a
parent vessel equals the sum of the cubes of the radii of the
daughters” stays as a landmark scaling law of geometries of
branching channels with non-turbulent flows (see Fig. 1). It was
originally proposed by Cecil D. Murray (1926) for the circulatory
and respiratory systems, yet later on has been proved to hold for
every branching laminar flow [3,4].

Murray stated in his original work [2] that physiologic organi-
zation should be based on principle and pointed out minimum
work and balanced cooperation of the organs in the body as the
best candidate for such a principle. Sherman [3] provided a full
derivation of Murray's law based on that principle. Allometric
scaling laws are common in biology and, with the purpose of their
explanation, approaches have been developed based on optimal
performance of the whole system, either trough minimization of
energy dissipation [5] or through flow configuration that enables
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maximum flow access [6]. West and co-workers [5] presented a
general model of allometric scaling relations (WBE model) in that
the ratio between the diameters of consecutive arteries, Dy, 1/Dy, is
n~ 12 for arteries, and n~ '/ for small vessels (1 stands for branching
ratio), regardless of the length of the vessels.

Murray's Law has also been considered in the context of engi-
neered systems. About a decade ago, Bejan and coworkers [4]
proved that Murray's law may be deduced from a general princi-
ple — the Constructal Law (1997) — which states: “For a finite-size
system to persist in time (to live), it must evolve in such a way that
it provides easier access to the imposed currents that flow through
it.” (see for instance Ref. [7]). Said another way, Constructal Law
entails evolution of flow architecture in such a way that under the
existing constraints the distribution of flow resistances evolves in
time to achieve minimum global flow resistance.

Under the conjecture that Nature has optimized in time the
living structures, Reis and coworkers [8] applied both Murray's Law
and Constructal Law to successfully anticipate some architectural
features of the lung tree. More complete information about the
successful application of the Constructal Law may be found in Bejan
[6], Reis [9], and Bejan and Lorente [10].

However, we note that with respect to optimal performance
Mauroy et al. [11] have put forward the idea that “the optimal
system is dangerously sensitive to fluctuations or physiological
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Fig. 1. Branching channels with distensible walls (D — diameter; L — length).

variability, such that physical optimality cannot be the only crite-
rion for design”.

With respect to optimal scaling in asymmetric branching, Bejan
[7] has shown that

Dy 3\"13 Dy L
n=(1+2) Tp=p (1)

where Dy/Dy = L/L1 = &, is the asymmetry factor of daughter
vessels, and the subscripts 0, 1, 2 represent the parent and each
one of the daughter vessels, respectively. The Eq. (1) which re-
lates homothety coefficient with asymmetry factor further adds
to the study of scaling in asymmetric flows, which are shown to
be important for achieving optimal performance of flow trees
[12].

In the following we will further extend this analysis to find out
the scaling relations of branching pulsatile flows.

2. Pulsatile flows

Flows that develop in circulatory trees are ubiquitous in Nature.
In some animals, namely the vertebrates, blood is rhythmically
pumped through the entire body at a broad range of pulse rates. It is
recognized that pulsatile flow performs best than continuous flow
because it induces lower overall resistances [13] and also better
blood perfusion [14].

The most complete model of pulsatile flows, was put forward by
Womersley [15] who solved Navier—Stokes equation in channel
with elastic walls and periodic pressure forcing, and provided for-
mulas for the pressure wave, and the radial and longitudinal
components of the velocity field in the arteries. This work that stays
as a landmark in the field was used as one of the basis of the WBE
model [5].

Since then, other works have appeared that modeled pulsating
flows in rigid channels [16]. Noteworthy are those of Nield and
Kuznetzov [17], Siegel and Perlmutter [18] and Faghri et al. [19],
albeit these studies were also carried out under the “rigid channel”
assumption. Models using analogy with electric circuits date back
to about several years ago. Remarkable by its complexity are those
of Tsitlik et al. [20], Avolio [21], or recently that of Mirzaee et al.
[22].

With the purpose of optimizing branching structures with
pulsatile flows, in what follows we will further explore the parallel
RC model. Though Womersley's equations describe pulsatile flows
accurately, they are quite complex, and not easy to handle analyt-
ically in the study of branching vessels. This is why we use an RC
model as a suitable description of pulsatile flow. In this model the
flow induced by the pressure wave “charges the capacitor” (the
arterial elastic walls) while it is braked by a “Poiseuille resistance”
in the flow direction. The rationale for using Poiseuille flow, rather
than considering a more complex model based on the Navier—-
Stokes equation is explained in the following.

Let us start from Navier—Stokes equation for unidirectional
flow: du/at + u.gradu = —p~'grad P + vlap u. In the case of pulsatile
flow in arteries, the inertial terms may be discarded because they
are, at least, of one order of magnitude smaller than the other
terms, as it is shown through scale analysis. In this way, let u denote
average blood velocity, 7 characteristic time related to pulse wave
frequency, L. the characteristic length in the flow direction, D vessel
diameter, p blood density, AP pressure variation along the vessel
and » blood kinematic viscosity. Then, by assuming the following
scale values for large arteries: u~10"' ms ™, 7~1s, L.~1 m, D~10"> m,
AP-~10° Pa and v~10~> m? s, the orders of magnitude (in ms=2) of
the terms in the Navier—Stokes equation are: oufdt~10,
u.gradu~10~2, p~lgradP~1, p~lap u~1, therefore justifying the use
of Poiseuille flow as a first approach in the study of the human
arterial system. Models that include the term ou/ot lead to greater
complexity in the calculations but did not cause a change in the
conclusions. For example, the RLC model developed by Jager and
co-workers [23] accounts for the “sleeve effect”, which arises from
the interaction between viscous and inertial terms in the
Navier—Stokes equation. However, in the same study [23] it was
shown that the “sleeve effect” is important in some arteries at
frequencies higher than 15 rad s, which is somehow beyond the
normal range of the human pulse frequency.

In real systems, pressure waves of some frequency travel all
along the circulatory trees. Energy travels in the form of enthalpy
plus mechanical energy of the bulk fluid, and in the form of elastic
energy of the vessel walls.

As the basis for building up a model of a pulsatile flow driven by
a pressure difference AP in a vessel of length L and diameter D, one
starts from the Hagen—Poiseuille equation in the form:

I =k;'L~1D*AP, (2)

where I is current (m® s 1), ka = 1287, in which g is dynamic
viscosity of the fluid. In pulsatile flow, both AP and D are functions
of time, and therefore the same happens with the conductance
Ky, = ka'L'D* In what follows the variables D,L,V standing for
geometric features of vessels with pulsatile flow represent values
averaged over a cycle. In this way, as a first approximation we will
consider the actual conductance in the channel as the sum of the
average conductance (corresponding to diameter D) plus the de-
viation corresponding to diameter variation with pressure, i.e.

Kp(t) = K + K = k;'L-'D* (1 + 28(dP/dt)oAt), 3)

where ¢ = (2/D)(dD/dP) is the distensiblity coefficient and At is the
time elapsed after the channel diameter has reached the average
value. The Eq. (3) shows that the conductance is the sum of two
terms: the first one corresponds to the inverse of the usual resis-
tance while the second one is equivalent to the inverse of a
capacitive resistance. This aspect is made clearer if we consider
I(t) = Ky(t)AP(t) together with Eq. (3) to obtain:

I=ky 'L 'D*AP + 2k; 'L~ D*(At)8AP(dP/dt),, (4)

Eq. (4) shows that the flow in a channel with elastic walls is
composed of two terms: one corresponds to a resistive current,

Iy = k;'L-'D*AP, (5)
while the other matches up a capacitive current,

Ic = 2I; (At) g(dP/dt),. (6)
with capacitance C = 2[(At)g, (see Fig. 2).
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