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a b s t r a c t

Based on the dynamic matrix control (DMC) idea, a method is established to simultaneously estimate
boundary heat flux for unsteady heat conduction system in this paper. The measured temperature in-
formation at two measured points in the internal system is utilized to simultaneously determine tran-
sient heat flux q1(t) and q2(t) at two boundaries in the system. The algorithm adopts step response
function to describe dynamic relationship of the system, without prior supposing the surface heat flux in
the next period, and then the boundary heat flux at the present moment is inversed simultaneously
through rolling optimization. In order to give attention to both the stability of inversion results, the
inversing heat flux q1(t) and q2(t) are regularized respectively using different regularization parameters
a1 and a2. A method of same temperature discrepancy curve (STDC) is designed to estimate the optimal
values (a1)opt and (a2)opt of regularization parameters according to discrepancy principle. Numerical
experiments are divided into two parts. First of all, compared with the sequential function specification
method (SFSM), the effects of the future time steps as well as the measured temperature error on
simultaneously inversion results of the boundary heat flux are investigated. Results show that the DMC
inversion method established by this paper can use smaller future time steps r to simultaneously esti-
mate transient boundary heat flux of the system, and obviously improve the anti-interference of
measured noise. Second, the validity of the inversion results obtained by the proposed method is dis-
cussed respectively by cases with different sizes and changing rules of boundary heat fluxes as well as
different measured locations. And by comparing with the traditional centralized regularization (CR), the
necessity of respectively regularization for each inversing heat flux is confirmed by using different
regularization parameters.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

It is the direct heat conduction problems to obtain temperature
field by solving heat conduction differential equation with the
object's thermal physical parameters, initial conditions and
boundary conditions known. If some boundary conditions and
initial conditions, etc. are unknown in the direct heat conduction
problem, the temperature changing laws of some known points are
utilized to inverse the unknown definite conditions, which is the
inverse heat conduction problems (IHCP). IHCP has been widely
applied in the fields of power engineering, aerospace, biological
heat transfer, etc. [1e5].

In recent decades, people have developed and improved many
solution strategies of IHCP from different angles [6e8]. A numerical
solution of IHCP is established according to using the Tikhonov
regularization method (TRM) combined with the conjugate
gradient method (CGM) considered by Lu et al. [9]. As an effective
numerical solution, the sequential function specification method
(SFSM) proposed by Beck et al. [10e12] is especially widely used in
the unsteady IHCP. Wang et al. [13e15] proposed a decentralized
fuzzy inference (DFI) method for the inverse problems of steady
heating boundary conditions, significantly improving the anti ill-
posed characteristic of inverse process. Zhang et al. [16] applied
the CGM to inverse spatially and temporally varying boundary
temperature in two-dimensional heat conduction system.

In the above all algorithms, the SFSM and TRM have received
more applications [6,17e19]. It is necessary for SFSM to firstly
assume specific function forms of the inversing parameters over a
period of future time, and the measured temperature information

* Corresponding author. School of Power Engineering, Chongqing University,
Chongqing 400044, PR China. Tel.: þ86 23 65103512.

E-mail address: wangguangjun@cqu.edu.cn (G. Wang).

Contents lists available at ScienceDirect

International Journal of Thermal Sciences

journal homepage: www.elsevier .com/locate/ i j ts

http://dx.doi.org/10.1016/j.ijthermalsci.2014.09.013
1290-0729/© 2014 Elsevier Masson SAS. All rights reserved.

International Journal of Thermal Sciences 88 (2015) 148e157

Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:wangguangjun@cqu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijthermalsci.2014.09.013&domain=pdf
www.sciencedirect.com/science/journal/12900729
http://www.elsevier.com/locate/ijts
http://dx.doi.org/10.1016/j.ijthermalsci.2014.09.013
http://dx.doi.org/10.1016/j.ijthermalsci.2014.09.013
http://dx.doi.org/10.1016/j.ijthermalsci.2014.09.013


in the future period of time is used to inverse boundary conditions
at the current time, which is one effective way to solve the un-
steady IHCP because of high computational efficiency. For SFSM, it
is very sensitive to the future time steps r, the selection of r has a
direct influence on the anti-interference of inversion results for
measured error [1]. With the increasing of measured temperature
error, a larger future time steps r is required in order to guarantee
the stability of inversion results. In addition, it is also an obvious
disadvantage for SFSM to necessarily assume the specific functions
of the inversing parameters over a period of future time. For TRM,
the traditional centralized regularization (CR) is introduced into
the objective function to improve the stability of inversion results
[1,3]. However, considering for estimating multiple heating
boundary conditions simultaneously (for example, different sizes
of boundary heat fluxes), TRM has adopted the same regulariza-
tion parameter to estimate all heating boundary conditions, which
could cause instability of inversion results of partial heating
boundary conditions. Namely, all heating boundary conditions
can't be effectively identified simultaneously, which needs to be
improved for TRM.

As a kind of important predictive control algorithm, Dynamic
matrix control (DMC) has been widely applied in the field of
modern control [20]. The choosing of control amounts at the cur-
rent moment is determined by rolling optimization according to
predictive information of the system's outputs over a period of
future time. DMC has the characteristics of strong adaptability and
good robustness, etc.

Based on DMC idea, an inversion method of simultaneously
regularization is established for two-dimensional unsteady heating
boundary conditions in this paper. The system's step response is
adopted as the prediction model, and the measured temperature
information is used to simultaneously identify heat flux of different
boundaries, and then an optimization method about regularization
parameters based on a method of same temperature discrepancy
curve (STDC) is established, the inversing heat fluxes are regular-
ized respectively using different regularization parameters.
Compared with SFSM and traditional CR, the rationality of the
inversion method established in this paper is proved.

2. Two-dimensional unsteady heat conduction model

The two-dimensional unsteady heat conduction system is used
as the object of study as shown in Fig. 1. It is assumed that the
evenly distributed and transient boundary heat fluxes are applied
to the surface S1 and S2 respectively. Namely, the two surface heat
fluxes q1 and q2 are two functions with only respect to the time

variable t. The governing equation, the initial and boundary con-
ditions of temperature T(x,y,t) are as follows respectively:
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where r is the density, c and l are the heat capacity and thermal
conductivity coefficient respectively, q1(t) and q2(t) are respectively
boundary heat flux on the surface S1 and S2, T0(x,y) is the initial
temperature distribution.

In the condition of all known in above, Eq. (1) is solved by the
finite volume method and alternating direction implicit algorithm
to determine transient temperature distribution Ti,j,k in the system.
Here, Ti,j,k ¼ T(xi,yj,tk), which shows temperature of the node (xi,yj)
at the moment tk.

3. Dynamic matrix control (DMC) algorithm for solving
inverse problem

If other conditions are known in Eq. (1), but the boundary heat
flux qk1 and qk2 are unknown, the boundary heat flux qk1 and qk2 are
identified according to the measured temperature values of the
measured points TC1 and TC2 at moment k,kþ 1,/,kþ r� 1, which
has constituted the corresponding IHCP. Here r stands for the
predetermined future time steps, which are the numbers of time
discrete points over a period of future from the current moment
kth. qk1 and qk2 are the estimated values of q1(t) and q2(t) respectively
at the current momentk.

The aforementioned IHCP is solved by utilizing DMC algorithm
in this work.

3.1. Establishing prediction model

The step response of the object is adopted as prediction model
to predict the temperature Tkþj

m ðj ¼ 0;1;/r � 1; m ¼ 1;2Þ of r
moment at the measured point m according to increments of
boundary heat flux Dqki ;Dq

kþ1
i ;/;Dqkþr�1

i ði ¼ 1;2Þ in the future
moment in the system.

According to the superposition principle, the input increments
Dqkþj

i with groups of r are input to the system from the kthmoment,
the temperature Tkþj

m at the measured point m is the sum of the

output T
∧kþj

m at the (k þ j)th time without any control increments
and the outputs when the r control increments is applied individ-
ually to the system, namely:Fig. 1. Two-dimensional unsteady heat conduction system.
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