
On the thermal instability induced by viscous dissipation

Antonio Barletta
Department of Industrial Engineering, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

a r t i c l e i n f o

Article history:
Received 7 November 2013
Received in revised form
10 February 2014
Accepted 19 February 2014
Available online 27 March 2014

Keywords:
Viscous dissipation
Linear instability
Thermal convection
Porous medium
Throughflow

a b s t r a c t

The effect of viscous dissipation may be the sole cause of a thermoconvective instability either in a fluid
clear of solid material or in a fluid-saturated porous medium. Several recent investigations have
contributed to illustrate this result under different flow and thermal conditions. The elementary physical
nature of the dissipation induced instability is just the same as that of the RayleigheBénard instability,
namely the onset of a secondary buoyant flow taking place when the basic temperature gradient be-
comes sufficiently intense. The essential difference is that the dissipation instability is not induced by an
external thermal forcing due to the temperature boundary conditions, as it happens for the Rayleigh
eBénard instability. On the other hand, the cause of the dissipation instability is the basic flow rate itself,
acting thermally as a heat generation mechanism. Thus, the governing parameter determining the
transition from stability to instability is not the Rayleigh number, as in the classical RayleigheBénard
problem, but the product between the Gebhart number and the square Péclet number.

� 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

The thermoconvective instability, either in a fluid or in a fluid-
saturated porous medium, is usually associated with a vertical
temperature gradient prescribed through the boundary conditions.
The prototypical setup is thewell-known RayleigheBénard system:
a fluid at rest confined between two horizontal plane boundaries
having uniform temperatures, and such that the lower boundary is
hotter than the upper boundary. The Rayleigh number, or the
DarcyeRayleigh number in the case of porous media, serves to
establish the onset conditions for the instability through its critical
value: when this critical value is exceeded, convective cells appear
in the fluid initially at rest.

Although it is not so uncommon to consider viscous dissipation
in fluid flows as a necessarily negligible effect, this is not always the
case. A recurrent argument is that one cannotwarm up a cup of cold
coffee by stirring it with a spoon. On the contrary it is possible,
provided that one uses a suitable cup and a suitable spoon. The first
evidence of this possibility dates back to circa 1850, when James
Prescott Joule published the results of his very famous paddlewheel
experiment about the mechanical equivalent of heat. Actually, what
Joule showedwas that it is possible to rise the temperature of water
in a thermally insulated tank (the cup) with paddles (the spoon)
whose rotation is caused by a falling weight. Despite its usual

interpretation relevant to thefirst principle of thermodynamics, one
may well recognise that Joule’s experiment is the first evidence of
the intensity of viscous dissipation, under suitable flow conditions.

Recent studies [1e22] have shown that the thermoconvective
instability may be produced just by the effect of viscous dissipation,
even without a boundary thermal forcing, as in the Rayleighe
Bénard system. In other words, the basic vertical temperature
gradient is built up solely by the internal viscous heating, while the
thermal boundary conditions act just as to allow the downward
orientation of the gradient. A pair of boundary conditions that
produces this effect is adiabatic lower boundary and isothermal
upper boundary. An important point is that, unlike in the Rayleighe
Bénard system, a linear instability induced by viscous dissipation
can exist only if the basic state of the fluid is one with a nonvan-
ishing velocity field. In fact, in the classical RayleigheBénard sys-
tem, the viscous dissipation would just produce a higher-order
nonlinear effect, negligible in a linear stability analysis. It must be
mentioned that the idea of an instability induced by viscous
dissipation in shear flows is not novel, as Joseph [23] described a
similar effect more than forty years ago. However, the instability
studied by Joseph is not a thermoconvective one, as it is not
induced by the thermal buoyancy. On the other hand, it is caused by
the temperature-dependence of the fluid viscosity.

Themain aim of this contribution is to illustrate the main results
obtained on the dissipation-induced thermoconvective instability.
Starting from themodelling of viscous dissipation in the framework
of the OberbeckeBoussinesq approximation, the role played by thisE-mail address: antonio.barletta@unibo.it.
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effect in determining the linear stability bound will be described,
both with reference to clear fluids and to saturated porous media.
Several cases will be surveyed, providing numerical results and
suggesting possible comparisons with studies of the thermo-
convective instability in heat generating fluids [24e27].

Another objective of this paper is to report novel results
regarding the onset of dissipation-induced instability in a fluid
saturated porous layer with horizontal throughflow and an upper
open boundary. This analysis is a development of the study previ-
ously carried out by Barletta, Celli, and Rees [2] with reference to a
similar problem where the upper boundary of the porous layer is
assumed to be impermeable.

2. The OberbeckeBoussinesq approximation and the local
energy balance

2.1. A clear fluid

Let us consider a clear fluid, viz. a fluid clear of solid material,
one whose momentum balance is given by the NaviereStokes
equation. The conceptual scheme for describing buoyant flows is
the OberbeckeBoussinesq approximation. The nature of the Ober-
beckeBoussinesq approximation stems from the assumption that
the fluid properties are considered as constants with the only
exception of the density, r, whose change is taken into account only
in the gravitational body force term of the momentum balance. The
linear equation of state is in fact assumed,

r ¼ r0½1� bðT � T0Þ�; (1)

where the reference density r0 corresponds to a properly defined
reference temperature T0, and b is the thermal expansion coeffi-
cient at constant pressure.

Equation (1) implies that the density is evaluated at constant
pressure and that the temperature changes are very small. Thus, the
mass and momentum balance equations are given by

V$u ¼ 0; (2)

vu
vt

þ u$Vu ¼ � 1
r0

VP � ðT � T0Þbg þ nV2u; (3)

where u ¼ (ui) is the velocity field, t is time, and x ¼ (xi) is the
position vector. Moreover, n is the kinematic viscosity, g¼ (gi) is the
gravitational acceleration, T is the temperature field, while P is the
dynamic pressure, namely the difference between the pressure
field p and the static pressure field, r0g$x. Equations (2) and (3)
must be completed with the energy balance in order to achieve
the closure of the problem. In the literature, there is a manifold
answer to the question of the proper formulation of the local en-
ergy balance in the framework of the OberbeckeBoussinesq
approximation. In fact, one may have Chandrasekhar’s [28] and
White’s [29] formulation

r0cv

�
vT
vt

þ u$VT
�

¼ kV2T þ qg þ 2mD : D; (4)

where m ¼ r0n is the dynamic viscosity, k is the thermal conduc-
tivity, cv is the specific heat at constant volume. The symbol D
denotes the strain tensor, having components

Dij ¼
1
2

 
vui
vxj

þ vuj
vxi

!
; (5)

while D : D stands for the double dot product DijDij, where the
summation over repeated indices is assumed.

Nomenclature

a wave number
(ax,az) wave vector
c specific heat
cp specific heat at constant pressure
cv specific heat at constant volume
cf form-drag coefficient
D strain tensor, ðDijÞ
ey unit vector along the y-axis
f,h perturbation amplitude functions
Fd drag force
g modulus of g
g gravitational acceleration
Ge Gebhart number
k thermal conductivity
~k effective thermal conductivity
K permeability
L layer thickness
p pressure
P dynamic pressure, p�r0g$x
Pe Péclet number
qg power generated per unit volume
R DarcyeRayleigh number
Ra Rayleigh number
t time
T temperature
Tc,Th boundary temperatures
T0 reference temperature

u velocity, (u,v,w), (ui)
U velocity perturbation, (U,V,W)
u0 reference velocity
x,y,z Cartesian coordinates
x position vector, (xi)

Greek symbols
a thermal diffusivity
~a effective thermal diffusivity
b thermal expansion coefficient
g ratio ax/a
ε perturbation parameter
h dimensionless parameter, Eq. (48)
q temperature perturbation
L product GePe2

m dynamic viscosity
~m effective dynamic viscosity
n kinematic viscosity
r density
r0 reference density
s heat capacity ratio
4 porosity
F power dissipated per unit volume
c inclination angle
j scalar field, Eq. (40)
u angular frequency

Subscripts
cr critical value
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