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h i g h l i g h t s

� Proposing a tractable adaptive min–max–min robust formulation.
� Introducing a decomposition algorithm based on dual cutting planes.
� Presenting a full model of DR program for both energy and reserve scheduling.
� Conducting a Monte Carlo simulation analysis to justify accuracy and robustness.
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a b s t r a c t

Increasing penetration of variable loads and renewable resources in smart distribution networks brings
about great challenges to the conventional scheduling and operation due to the uncertain nature. This
paper presents a novel uncertainty handling framework, based on the underlying idea of robust optimiza-
tion approach, to portray the uncertainties of load demands and wind power productions over uncer-
tainty sets. Accordingly, a tractable min–max–min cost model is proposed to find a robust optimal
day-ahead scheduling of smart distribution network immunizing against the worst-case realization of
uncertain variables. In addition, considering demand response programs as one of the important
resources in the smart distribution network, participation of customers in both energy and reserve
scheduling is explicitly formulated. As the proposed min–max–min cost model cannot be solved directly
by commercial optimization packages, a decomposition algorithm is presented based on dual cutting
planes to decouple the problem into a master problem and a sub-problem. The master problem finds
the day-ahead scheduling, while the sub-problem determines the worst-case realization of uncertain
variables within uncertainty sets. Computational results for the modified version of IEEE 33-bus distribu-
tion test network demonstrate the effectiveness and efficiency of the proposed model.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, power systems are developing toward smart grids to
provide financial and technical benefits for both system operators
and customers. With development of smart grids at distribution
level, distributed energy resources (DERs) such as renewable and
non-renewable distributed generation (DG) units, battery energy
storage systems (BEESs) and demand response (DR) programs are
being integrated into the distribution network operation [1,2].
The presence of one or more of these equipments along with the

uncertainties will create more complex and challenging tasks in
day-ahead scheduling of the smart distribution networks (SDNs).

From an optimization perspective, day-ahead scheduling of the
SDNs is a high computational optimization problem which can be
solved using deterministic or stochastic approaches. Refs. [3–5]
focus on deterministic approaches. A two-stage hierarchical frame-
work for day-ahead scheduling of distribution networks is pro-
posed in [3]. The first stage of the proposed framework deals with
operational decisions on purchases from the day-ahead market
and commitment of DGs, whereas the decisions related to the dis-
patching of committed DGs, participating in real-time market and
planning of curtailable loads are made in the second stage. The
study in [4] uses an optimal power flow algorithm to develop a gen-
eralized formulation for minimizing the total operation cost of the
SDN considering network constraints. In [5], a fuzzy-logic-based
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approach is proposed to schedule distribution network with the
objective of minimizing operation and emission costs. However,
due to the lack of accurate forecasting methods [6], deterministic
approaches are not acceptable for day-ahead scheduling of the
SDN. In stochastic approaches, uncertain variables are modeled by
means of probability density functions (PDFs). In [7], a model is
developed to minimize the expected operation cost of distribution
companies while the risk imposed by uncertainties is restricted to
a predetermined level. The proposed stochastic model only focuses
on the energy scheduling without considering renewable energy
units and demand response. The authors of [8] propose a proba-
bilistic model for estimating spinning reserve in micro-grids. In
the proposed model, the uncertainties of wind and solar power
and load along with unreliability of DG units are considered. A
two-stage stochastic energy and reserve management approach
for micro-grids is proposed in [9]. In the first-stage, the optimal

energy scheduling is determined based on the load, wind and solar
forecasts. The optimal spinning reserve is estimated using sensitiv-
ity analysis in the second-stage. In [10], a risk based two-stage
stochastic optimization model is proposed for day-ahead schedul-
ing of the SDN with objective of operation cost minimization and
risk management.

Thanks to recent advancements in smart grid technologies, DR
can be employed as a main resource in economic and reliable oper-
ation of the SDNs. Basically DR is defined as consumers’ ability to
modify their normal consumption in response to variable electric-
ity prices or incentive payments [11]. The study in [12] has incor-
porated load curtailment and load shifting DR programs in energy
scheduling of the industrial virtual power plants to maximize
profit. In [13], a probabilistic methodology aiming at integrating
DR in the distribution energy market based on distribution loca-
tional marginal price is introduced. Besides energy scheduling,

Nomenclature

Indices
b index of battery energy storage systems,

b ¼ 1;2; . . . ;NBESS

d index of demand response providers, d ¼ 1;2; . . . ;NDRP

i index of industrial loads, i ¼ 1;2; . . . ;NIL

j index of non-renewable DG units, j ¼ 1;2; . . . ;NDG

k index of steps of bid-quantity offers, k ¼ 1;2; . . . ;K
n;m index of distribution network buses, n ¼ 1;2; . . . ;NBus

t index of optimization periods, t ¼ 1;2; . . . ;NT

w index of wind turbines, w ¼ 1;2; . . . ;NW

# index of iterations of decomposition algorithm
n index of binary variables used for discretization

Parameters
qDA
g day-ahead wholesale market price

a; b; c cost function coefficients of DG units
SUC start-up cost of DG units
UR; DR ramp up/down of DG units
UT; DT minimum up/down time of DG units
PDG; PDG minimum/maximum power limit of DG units
CI power imbalance cost
r; x resistance/reactance of feeders
ISub maximum current flow allowed at substation
V ;V minimum/maximum limit of bus voltage
pL, qL active/reactive power of loads
PIL maximum load reduction offered by industrial loads
PDRP maximum load reduction offered by DRPs
Od
min; Od

max minimum/maximum load reduction offered by DRPs
O load reduction offered by DRPs
gc; gd battery charge/discharge efficiency coefficients
SOC; SOC minimum/maximum capacity of BESSs
PL; PL lower/upper bound of uncertain load
PW ; PW lower/upper bound of uncertain wind power
CL; CL lower/upper bound of loads uncertainty budgets
CW ; CW lower/upper bound of wind power uncertainty budgets
r� standard deviation of ð�Þ uncertain variable (e.g., rL)
C� uncertainty budget of ð�Þ uncertain variable (e.g., CL and

CL)
b� forecast error of ð�Þ uncertain variable (e.g., bL)

Functions and variables
PDA
grid; QDA

grid day-ahead scheduled active/reactive power of substa-
tion

PDA
DG; QDA

DG day-ahead scheduled active/reactive power of DG units
PDA
W ; QDA

W day-ahead scheduled active/reactive power of wind tur-
bines

PDA
L ; QDA

L day-ahead forecasted active/reactive load in each bus
PDA
IL ; QDA

IL day-ahead scheduled active/reactive load reduction of
industrial loads

PDA
DRP ; QDA

DRP day-ahead scheduled active/reactive load reduction
of demand response providers

PRT
DG real-time active power dispatch of DG units

PRT
IL real-time active load reduction of industrial loads

PRT
DRP real-time active load reduction of demand response

providers
RDA
DG day-ahead scheduled reserve capacity of DG units

RDA
IL day-ahead scheduled reserve capacity of industrial

loads
RDA
DRP day-ahead scheduled reserve capacity of demand re-

sponse providers
Pu
W uncertain wind power

Pu
L uncertain load

CEDG cost function for power production of DG units
CRDG cost function for provided reserve capacity of DG units
CEIL cost function for load reduction of industrial loads
CRIL cost function for provided reserve capacity of industrial

loads
CEDRP cost function for load reduction of demand response

providers
CRDRP cost function for provided reserve capacity of demand

response providers
CSDG cost function for start-up of DG units
Imb imbalance power in real-time operation
o amount of accepted load reduction of DRPs in each step
p offered price of DRPs in each step
PDA
Bd ; PDA

Bc scheduled battery discharge/charge power
SOC capacity of battery energy storage systems
u; y; z binary variables for DG unit commitment/start-up/shut

down status
P f , Q f active/reactive power flow of feeders
l, v auxiliary variables introduced in the AC power flow

equations
LB; UB lower/upper bound of decomposition algorithm

Sets
UL uncertainty set for load
UW uncertainty set for wind power
NDA feasible set for day-ahead of smart distribution network
NRT feasible set for real-time operation of smart distribution

network
NMP feasible set for the master problem
NSP feasible set for the sub-problem
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