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a b s t r a c t

Heat conduction equation through a heat generated eccentric cylindrical annulus with the inner surface
kept at a constant temperature and the outer surface subjected to convection is analytically solved in
bipolar coordinates using the Green’s function method. Since it is not possible to find an analytical
Green’s function to the conduction equation in bipolar coordinates for an eccentric annulus subject to
boundary condition(s) of third type (convection), a novel method treating the same problem as a second
type boundary value problem is devised. The method has first been applied to heat generating eccentric
annuli and results have been compared to the results of computational fluids dynamics (CFD) code
FLUENT. Perfect agreement was observed for various geometrical configurations and a wide range of Biot
number. Then, heat transfer through eccentric annuli without heat generation was considered. Variation
of heat dissipation with radii ratio was studied and a very good agreement with the literature has been
observed. A simple approximate analytical expression for the heat transfer rate is derived using first term
(zero-order) approximation. It has been demonstrated that this expression gives very accurate results for
a wide range of geometrical configurations and Biot number.

� 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

The solution of the problems related to the annular regions
between cylinders has been long considered in classical electro-
dynamics, heat transfer, fluid mechanics, and reactor physics, etc.
Among these, analysis of conduction heat transfer for concentric
annular cylinders is well developed. Since three types of boundary
conditions could be imposed on each surface of the annulus there
are nine different conduction problems corresponding to the
possible combinations of boundary conditions on two boundaries.
Boundaries could be isothermal (first type boundary condition),
could be subjected to prescribed heat fluxes (second type boundary
condition) or could be subjected convection by a fluid at an ambient
temperature (third type boundary condition). Exact solutions of
those linear conduction problems for uniform boundary conditions
are presented by Özisik [1] for any functional form of source
distribution.

Eccentric cylindrical annuli in which boundaries are relatively
displaced radially are encountered in many heat transfer applica-
tions. The eccentricity could be due to the design or could arise

from manufacturing margins and operational conditions. Regard-
less the reason, the eccentricity may have a considerable effect on
the performance of the system. For example, Kundu and Das [2]
have studied the performance of the eccentric annular fins for a
variation of eccentricity, radii ratio, and Biot number as well as the
maximum base temperature. They showed that for a variable base
temperature, eccentric annular disc fins had a superior perfor-
mance compared to the concentric fins of equal volume. As dis-
cussed by El-Shaarawi and Mokheimer [3], during operation
eccentricity might occur in underground electric cable systems,
cylindrical solar collector system, and in many vertical annular
channel applications which may deteriorate the heat dissipation
because of change from concentric to eccentric configurations.

Exact and approximate solutions of the heat conduction equa-
tion in eccentric cylindrical annuli with or without heat generation
are available in the literature for three types of boundary condi-
tions. Using bipolar coordinates, El-Saden [4] solved analytically
the steady-state conduction equation in infinitely long eccentric
cylindrical annuli with uniform heat generation rate when
boundaries subjected to constant but different temperatures. His
solution was based on the superposition of the solution of homo-
geneous equation, i.e. Laplace equation, and a particular solution.
As long as a particular solution could be found El-Saden’s solution is
applicable to the conduction in eccentric cylindrical annuli with
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any combination of boundary conditions imposed on the two
boundary surfaces. For uniform heat generation rate, El-Saden’s
formulation could be extended to any combination of boundary
conditions on two boundary surfaces as El-Shaarawi and
Mokheimer [3] demonstrated this for third kind boundary condi-
tions. However, it may not be possible to propose a particular so-
lution in general especially when source distribution is space
dependent. Eckert and Drake [5] solved the same problem
approximately by the superposition of the infinite line heat source
and sink solutions. DeFelice and Bau [6] obtained an exact solution
when convective boundary conditions are imposed on both
boundary surfaces without heat generation. There are also studies
which treat the conduction problems in eccentric cylindrical annuli
numerically [7,8].

In a recent work by Moharana and Das [9], the conduction
equation was solved approximately in an eccentric cylindrical
annulus without heat generation when the inner surface kept at a
constant temperature and the outer surface subjected to the con-
vection by three different techniques: perturbation method,
boundary collocation method, and sector method. They success-
fully applied these three approximate methods to the problem and
obtained results both self-consistent and consistent with the
literature. It is noted in their work that “heat transfer through an
eccentric annulus with isothermal inner surface and convective
outer surface cannot be solved analytically. Aziz [10] discussed this
issue in detail”. It is also stated in their work that a simple analytical
expression cannot be obtained for the heat transfer through an
eccentric annulus with isothermal inner surface and convective
outer boundary. These statements and the literature search moti-
vated the present work. A careful literature work revealed that
there is no analytical work applicable in general which solves the
heat conduction equation through a heat generated eccentric
annulus with convective boundary condition(s). The existing
analytical solutions as in Ref. [3] are limited to the constant heat
generation case or without heat generation case as in Ref. [6]. In
short, the desire to obtain an analytical solution for the case of any
functional form of space dependency in heat generation when one
or two boundaries subjected to convection is the main motivation
of the present work.

To solve the conduction equation for an eccentric cylindrical
annulus with heat generation, the first method that comes to
mind is the method of eigenfunction expansion. Helmholtz
equation for eccentric cylindrical geometry has been solved using
different approaches, as for example conformal transformations
mapping the eccentric annulus onto a concentric one. Since the
transformed two dimensional Helmholtz equation is not con-
formally invariant, the transformed equation has the coordinate
dependent coefficients and to be solved numerically [11]. Another
approach is to express the solution in two different polar co-
ordinates whose origins are the centers of cylinders forming the
cylindrical annulus [12]. As each boundary surface fits to only one
of the two polar coordinates systems used, the corresponding
solutions satisfy one of the two boundary conditions exactly.
Then, the two solutions are expressed in one of the coordinates
system via translational properties of the eigenfunctions. This
yields to relate unknown coefficients of the eigenfunctions of the
two series solutions. The existence of the solution for the linear
system of the unknown expansion coefficients results in a
determinantal equation corresponding to a transcendental
equation for the unknown eigenvalues. To solve this equation for
quite a big number of eigenvalues is a formidable task in most
practical cases. Even it is solved the utilization of the solution is
still not very appropriate especially for the computations
involving integration over whole domain.

In this study, the heat conduction equation for a heat generated
eccentric annulus with isothermal inner surface and convective
outer boundary is analytically solved. To do this, we treated the
problem in bipolar coordinates system in which two boundary
surfaces could be represented only with a single coordinate vari-
able. Eigenfunction expansion method fails in analyticity since the
Helmholtz equation is not separable or R-separable in bipolar
coordinates [13]. Fortunately, Laplace equation is separable in bi-
polar coordinates which leads us to use Green’s function method.
With the presented method, the problem of both boundary sur-
faces subjected to the convection could easily be solved by the
superposition of the presented solution and its counterpart
obtainable via interchanging boundaries. Thus, the method in-
volves the solutions for any combination of the first and third type

Nomenclature

a bipolar coordinates parameter, m
Bi Biot number (Bi ¼ hro/k)
d1, d2 distances to the foci, m
e eccentricity, m
F1, F2 foci
g[ radial part of the Green’s function
G Green’s function
hx scale factor (Eq. (6))
hq scale factor (Eq. (6))
hx normalized scale factor (hx ¼ hx=a)
hq normalized scale factor ðhq ¼ hq=aÞ
Il;m integral (Eqs. (30) and (B11))
k thermal conductivity, W/(m K)
n unit normal
_q volumetric heat generation rate, W/m3

Q dimensionless heat generation (Q ¼ _qa2=½kðTi � TNÞ�)
Q dimensionless heat transfer rate
~Qðx; qÞ Eq. (25)
r radius of sphere, m
S boundary surface

T temperature, K

Greek symbols
d Dirac’s delta function, dimensionless eccentricity

(d ¼ (e/ri)/(ro/ri � 1))
V2 Laplacian
q coordinate
x coordinate
J dimensionless temperature (J ¼ (T � TN)/(Ti � TN))
j[ [th moment of the outer surface temperature, Eq. (26)

Subscript
i inner
N ambient
o outer
< the smaller of the variables
> the larger of the variables

Superscript
0 source coordinate (computational domain)
e normalized
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