
Output-specific energy efficiency assessment: A data envelopment
analysis approach

D.Q. Zhou a, F. Wu a,⇑, X. Zhou b, P. Zhou a,⇑
aCollege of Economics and Management & Research Centre for Soft Energy Science, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Nanjing 210016, China
bAalto University School of Business, Runeberginkatu 22-24, 00100 Helsinki, Finland

h i g h l i g h t s

� Alternative output-specific energy efficiency measures are developed.
� Joint inputs and sub-joints inputs are taken into DEA models.
� Outputs are characterized in their own production technologies.
� The proposed method provides an alternative way of dealing with undesirable output.
� The novel method is more capable of identifying inefficient production behavior.
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a b s t r a c t

Past decade has seen numerous data envelopment analysis (DEA)-based energy efficiency studies, which
usually treat the production process as a ‘‘black box” and ignore the internal production information. This
paper takes into account the joint inputs and sub-joint inputs to reveal the specific information on how
inputs are allocated to outputs. To this end, we first propose an extended output-specific production
technology based on which two novel energy efficiency measures are developed. We also present an
empirical study on 32 countries to demonstrate the novelty and the usefulness of our method. We find
that our output-specific energy efficiency measures provide a more straightforward way of dealing with
undesirable output and are better capable of identifying inefficient production behavior.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Energy efficiency analysis has become an important topic in
various disciplines such as energy economics and operations
research. The aim of energy efficiency analysis is to evaluate a deci-
sion making unit’s (DMU’s) efficiency in terms of energy input by
comparing its energy consumption to its peers in a similar produc-
tion environment, which in turn leads to possible actions for
energy efficiency improvement and provides analysis foundation
for energy and environmental decision making. Amongst various
energy efficiency assessment techniques, data envelopment analy-
sis (DEA) has received much popularity worldwide as revealed by
Zhou et al. [1] and Liu et al. [2].

Many studies have contributed to the energy efficiency assess-
ment by developing various DEA models. For example, Hu and

Wang [3] first constructed a total-factor energy efficiency (TFEE)
index through DEA. Under the TFEE framework, Wang et al. [4]
developed a non-radial directional distance function method to
measure the scenario-based energy efficiency of China. Wang
et al. [5,6] respectively proposed a multi-directional and a range-
adjusted approach for energy efficiency assessment. Wang et al.
[7] built a meta-frontier DEA approach in order to account for
the technology heterogeneity. Recently, Zhou et al. [8] developed
a procedure to measure energy efficiency when production tech-
nology shows evidence of congestion. Duan et al. [9] proposed a
bootstrapped directional distance function approach to correct
the energy efficiency estimate bias. A common feature of these
studies is that they treat the production system as a ‘‘black box”
and the structure information on the production process is not
incorporated into modeling. The efficiency models in the absence
of internal structure information may lack discriminating power
as pointed out by Lewis and Sexton [10]. Recently, some network
DEA models aiming at opening the ‘‘black box” of energy efficiency
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assessment have been proposed. For example, Liu and Wang [11]
addressed the different properties of energy consumption pro-
cesses and built an adjusted network DEA method. Wu et al. [12]
constructed a two-stage network DEA model in which the undesir-
able outputs produced in the energy utilization stage were reused
as inputs in the pollution treatment stage.

In this paper, we develop two alternative output-specific energy
efficiency measures which contribute to opening the ‘‘black box” of
energy efficiency analysis in a way of particularly characterizing
joint inputs and sub-joint inputs in DEA models. The idea of
accounting for (sub-) joint inputs in the DEAmethodology was first
proposed by Cherchye et al. [13] and has been applied to cost
efficiency, coordination efficiency, profit efficiency and technical
efficiency analysis [13–16]. It is found that these jointly used
inputs give rise to economies of scope and are commonly used in
multi-output production processes. Despite the merits, none of
earlier TFEE studies have taken them into consideration.1 In con-
trast, by incorporating such allocation information, our energy effi-
ciency measures can closely relate to economies of scope and
hence establish themselves as desirable methods for modeling
multi-output production process at firm level, sector level, and even
country level.

Another appealing feature of our energy efficiency measures is
that they are based on an output-specific production technology.
The output-specific production technology, developed by Cherchye
et al. [13], characterizes each individual output in its own produc-
tion technology and is found to provide a natural way of dealing
with undesirable output [17]. Different from previous undesirable
output treatments in energy efficiency studies [4,12,18–26], we
employ the output-specific production technology to provide some
new insights into the ways of dealing with undesirable output. To
this end, we first make some extensions to the original work of
Cherchye et al. [13] to illustrate how to construct an extended
output-specific production technology when the practitioners have
acquired some clear information about the production technology.
Based on the extended output-specific production technology,
some novel DEA models for energy efficiency assessment are pro-
posed. Since no extra non-verifiable assumptions are imposed on
undesirable output, the energy efficiency bias caused by model
misspecification can be avoided. As such, our energy efficiency
measures could be particularly attractive in the energy efficiency
studies with joint production of both desirable output and undesir-
able output.

In the literature, there are a large number of empirical studies
focusing on the developed economies’ energy efficiency
[18,23,24,27–30]. However, it is arguably necessary to also exam-
ine the energy efficiency performance of developing countries
[31–33]. We therefore apply our novel method to an empirical
study on both developed and developing countries to demonstrate
its novelty and usefulness. A comparison with some traditional
energy efficiency measures is also proposed. The results show that
our method for energy efficiency assessment is more capable of
identifying inefficient production behavior.

The rest of this paper is organized as follows. In Section 2, we
introduce the extended output-specific production technology
based on which several DEA models are proposed to develop two
alternative output-specific energy efficiencymeasures. In Section 3,
we present the data used in the empirical study and conduct a
country-level energy efficiency analysis. Some discussions based
on the empirical results are further proposed to provide some
implications. Concluding remarks are presented in Section 4.

2. Methodology

2.1. Extended output-specific production technology

To illustrate our extended output-specific production technol-
ogy, we shall first introduce the original output-specific production
technology proposed by Cherchye et al. [13]. Consider a production
process which uses N inputs, captured by the vector
X ¼ ðx1; x2; . . . ; xnÞ0 2 RN

þ to produceM outputs, captured by the vec-

tor Y ¼ ðy1; y2; . . . ; ymÞ0 2 RM
þ : The output-specific production tech-

nology T which allows us to characterize each output m by its
own production technology can be expressed as

T ¼ ImðymÞ ¼ Xm 2 RN
þjXm can produce ym

n o
ð1Þ

where Xm represents the input vector used for the production of out-
putm, and ym represents the quantity of outputm. The input require-
ment set ImðymÞ is used to capture all the inputs combinations that
can produce ym: The true set ImðymÞ cannot be observed directly in
practice, but it can be estimated after imposing several standard pro-
ductionaxioms [13]. First of all, the inputs andoutputs are stronglyor
freely disposable. That is,more input never reduces the outputs and if
Xm can produce ym; then it can also produce less output. Second, the
input requirement set is convex, which means if two input vectors
can produce the output, then any convex combination of the two
input vectors can also produce the same output. Finally, all observed
input–output combinations are certainly feasible. Suppose we
observe a dataset for I DMUs, and each DMU i (i ¼ 1;2; . . . ; I) uses
input vector Xi which can be decomposed into (X1

i ;X
2
i ; . . . ;X

m
i ) to pro-

duce output vector Yi. A standard formof the output-specific produc-
tion technology based on the above minimum necessary
assumptions can be expressed within a DEA framework as follows:

T ¼ Xm
X
s2Dm

t

kms X
m
s 6 Xm;

X
s2Dm

t

kms ¼ 1; kms P 0

������

0
@

1
A ð2Þ

where the set Dm
t is used to capture all the DMUs that produce at

least the estimated DMU t’s output ymt , i.e. D
m
t ¼ s ymt 6 yms

��� �
: The

variables kms provide the weights of DMU s (s 2 Dm
t ) for constructing

the technical feasibility set associated with output ymt : The different
kms for different outputm indicate that the outputs are characterized
using their own production technologies. The equality constraint
related to kms indicates that the production technology is based on
the variable returns to scale (VRS) assumption.

It is worth noticing that the output-specific production technol-
ogy allows invoking different technology assumptions for different
outputs. This feature makes the practitioners capable of construct-
ing more realistic DEA models especially when they have acquired
clear information about the production technology. In what fol-
lows, we will especially focus on a joint production of both desir-
able output and undesirable output and introduce how to
construct an extended output-specific production technology
when the outputs exhibit some specific production technologies.

In production, it is generally assumed that the rate of increase in
economic output is related to the associated increase in the inputs,
showing a returns-to-scale property. Another property concerning
the economic output is convexity which indicates that if one input
vector could produce two different output levels, then it can also
produce any convex combination of the two output levels. In
energy efficiency studies, the imposition of constant return to scale
(CRS) and output convexity assumptions on the desirable output
has become a common practice. We could therefore integrate them
within Eq. (2). Regarding the undesirable output, previous energy
efficiency studies have developed several ways of dealing with it.
The dominant one is to integrate weak disposability assumption

1 Note that the shared input in Liu and Wang [11] can be proportionally allocated
to specific outputs. It is therefore not a joint input defined in this paper.
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