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h i g h l i g h t s

� Presents a novel demand response estimation framework for residential and commercial buildings.
� Applies a combination of EnergyPlus and two-state models for thermostatically controlled loads.
� Regression models are fit to each dataset for predicting DR potential quickly without any computational burden.
� Regression model equations are based on key inputs, including hour of day, set point change and outside air temperature.
� Models are validated for DR measurement in commercial buildings.
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a b s t r a c t

This paper presents a novel demand response estimation framework for residential and commercial
buildings using a combination of EnergyPlus and two-state models for thermostatically controlled loads.
Specifically, EnergyPlus models for commercial and multi-dwelling residential units are applied to con-
struct exhaustive datasets (i.e., with more than 300M data points) that capture the detailed load response
and complex thermodynamics of several building types. Subsequently, regression models are fit to each
dataset to predict DR potential based on key inputs, including hour of day, set point change and outside
air temperature. For single residential units, and residential thermostatically controlled loads (i.e. water
heaters and refrigerators) a two-state model from the literature is applied. For commercial office building
and Multiple Dwelling Units (MDUs) building, the fitted regression model can predict DR potential with
80–90% accuracy for more than 90% of data points. The coefficients of determination (i.e. R2 value) range
between 0.54 and 0.78 for the office buildings and 0.39–0.81 for MDUs, respectively. The proposed frame-
work is then validated for commercial buildings through a comparison with a dataset composed of 11
buildings during 12 demand response events. In addition, the use of the proposed simplified DR estima-
tion framework is presented in terms of two cases (1) peak load shed prediction in an individual building
and (2) aggregated DR up/down capacity from a large-scale group of different buildings.

Published by Elsevier Ltd.

1. Introduction

With penetration of intermittent renewable energy generation
positioned to increase in the coming years, there is a growing need
for ancillary services (AS) to absorb renewable related disruptions
and support power grid operation. Demand Response (DR), in the
form of direct load control, interruptible/curtailable programs,
and time-of-use rates, is emerging as a low-cost alternative to con-
ventional fast-ramping generation resources [1,2]. This emergence

is made possible partly because of the technological advances in
communication and control systems, and partly because of
decreasing costs of hardware. These advances make it possible
for fast, automated DR assets to be aggregated and to participate
in the wholesale market. Demand response in the wholesale mar-
ket can facilitate Regional Transmission Organizations (RTOs) and
Independent System operators (ISOs) in balancing supply and
demand, and thereby, help maintain stable energy prices [3].
Demand response has been recognized as a low-cost and practical
solution to allow more penetration of intermittent renewable
energy generation in bulk electric power systems [4]. More specif-
ically, this study indicates that the inter-hourly demand response
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magnitude is not as useful as intra-hourly demand response for
promoting additional renewable energy resources. On the other
hand, demand response has also been used to integrate with
customer-side distributed energy resources to enable optimal grid
transactions [5].

1.1. Demand response for ancillary services

There are various types of AS in the power system, including
frequency control, voltage control, spinning reserve, standing
reserve, operating reserve, black start capability, remote genera-
tion control, grid loss compensation and emergency control
actions. Among these AS products, two types have been identified
as products that fast DR can participate in: contingency and oper-
ating reserves [6]. Contingency reserves are allocated in response
to a major generator or transmission outage within 10 min holding
for 30 min or less. Operating reserve is the generating capacity
available to the system operator within a short interval of time
to meet demand, such as regulation service, load following and fast
energy market. Depending on the type of AS required, DR can be
requested to respond quickly in a similar manner as an AS genera-
tor. Over the past decade, DR has become increasingly capable of
providing AS in bulk power systems [7]. Some studies [8,9] have
argued that a number of small DR resources are well suited to pro-
vide AS to the grid. A smart appliance model was developed to uti-
lize the cycle delay and interruption for providing reserve services
[10]. Non-thermostatic loads, such as washing machines, dish
washers and dryers, were modeled with multiple discrete power
phases. A comprehensive modeling framework of a smart grid sys-
tem was developed to integrate with demand-side flexible
resource and renewable energy resource, which includes non-
thermostatic loads (e.g. appliances) and thermostatic loads (e.g.
air-conditioning units) [11]. Furthermore, a number of field studies
have been conducted to show the capability of DR for providing AS
[6,12,13]. The authors of [14] described generalized DR product
definitions for load participation in AS, energy, and capacity
markets.

1.2. Demand response potential from buildings

Residential and commercial building sectors account for
approximately 37% and 36% of total U.S. electricity consumption
respectively. Together, these sectors account for 73% of national
electricity consumption [15]. In particular, heating, ventilation

and air-conditioning system (HVAC) in buildings are well-suited
to load shedding and shifting on timescales of seconds to minutes.
Within the comfort bounds of building indoor temperature, the
power use of building HVAC systems are highly flexible and can
be controlled with temperature setpoint changes. Targeting build-
ing HVAC, as well as other thermostatically controlled loads (TCLs)
within these sectors can potentially provide DR resources across
different scales of DR products including regulation, flexibility,
contingency, energy and capacity services. These load types can
be an excellent resource for DR for several reasons:

1. HVAC systems accounts for a substantial electric load in com-
mercial buildings, often more than 1/3 of the total load.

2. The ‘‘thermal flywheel” like behavior of indoor environments
allows HVAC systems to be temporarily unloaded without
immediate impact to the building occupants.

3. It is common for HVAC systems to be at least partially auto-
mated with energy management and control systems (EMCSs).

In the residential building sector, thermostatically controlled
loads (TCLs) such as air conditioners, refrigerators, and water hea-
ters have been deployed to provide power system services [16–20].
To accommodate the need of real-time demand response, a recent
study developed a new thermostat for real-time price demand
response to allow reliable aggregate demand response for ancillary
services [21]. A few pilot studies were conducted to better under-
stand demand response potential and flexibility of residential
appliances [22,23].

1.3. Current approaches to quantifying building DR potential

Various research studies have investigated the modeling, con-
trol and aggregation of TCLs through a variety of methods. A sim-
plified equivalent thermal parameters (ETP) model is well-suited
for simulating DR potentials in residential and small commercial
buildings [24,25]. The use of two-state RC (resistance–capacitance)
is commonly used in the aggregation of residential TCL loads to
provide demand response in the market [9,17,26]. A recent study
presents a physical–statistical approach to simulate and forecast
energy consumption for heterogeneous buildings [27]. Uncertain
stochastic parameters are introduced into the physical model and
are derived based on the comparison with measurements. A simi-
lar combined physical and behavioral approach was also proposed
to simulate office building consumer load [28]. This bottom up

Nomenclature

a TCL thermal parameters, e�h=CiRi

a1;a2 regression coefficients
b1;b2 intercepts of the regression model
d deadband width (�C))
� individual TCL model noise (�C)
gi coefficient of performance
c setpoint adjustment (�C)
hai;t ambient temperature at time t (�C) or (�F)
h g
i heat gain (kW)
hsi;t thermostat setpoint (�C)
hi;t interior temperature (�C) or (�F)
Ai area of zone surface i (m2)
C Z zone capacitance (W h/�C)
Ci thermal capacitance (kW h/�C))
Cp zone air specific heat (J/kg k)
DRp demand response potential (%)
hi heat transfer coefficient of zone surface i (W/m2 K)

mi;t switch parameter representing ON/OFF state of the TCL,
1/0

minf mass flow of infiltration of outside air (kg/h)
msys mass flow of supply air from air systems (kg/h)

Pbase
i;h power consumption of the baseline (kW)

PDR
i;h power consumption during the DR event hours (kW)

Pr
i rated power (kW)

Qi convective internal loads (W)
R2 R squared, coefficient of determination
Ri thermal resistance (�C/kW)
Tsup supply air temperature (�C)
Ts zone surface temperature (�C)
TZ zone temperature (�C)
h time step
U U-value (W/m2 �C)
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