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a b s t r a c t

Heat and mass transfers can be controlled by plasma equilibrium reconstruction in toroidal confinement
nuclear fusion systems such as tokamaks. The Magnetohydrodynamic equilibrium in axisymmetric
plasma is described by the Grad-Shafranov equation in terms of the magnetic flux. In this paper, we have
proposed a new numerical solution to the Grad-Shafranov equation of an axisymmetric, transformed in
quasi-cylindrical coordinates solved with the Chebyshev collocation method, when the source term
(current density function) on the right hand side is quadratics as it is described by Atanasiu et al. The
Chebyshev collocation method is a method for computing highly accurate numerical solutions differ-
ential equations. We have described a circular cross section of tokamak and presented numerical result of
magnetic surfaces on the IR-T1 tokamak and compared the results with an analytical solution and then
calculated the Shafranov shift using a minimization procedure based on the Newton method.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

A plasma is an electrically conducting fluid or gas consisting
totally or partially of charged particles. At high temperatures the
highly ionized plasma is an excellent electrical conductor, and can
be confined and shaped by strong magnetic fields. Particular
plasma configurations are described in terms of solutions of the
Grad-Shafranov equation. In a tokamak, external magnetic mea-
surements have been applied to determine the important infor-
mation on plasma shapes, the safety factor, the sum of the average
poloidal beta bP and internal inductance li [1e10]. There are
methods for extraction of plasma parameters from external mag-
netic measurements. Swain and Neilson [2] presented an efficient
method to reconstruct the plasma shapes and line integrals of the
boundary poloidal magnetic field from external magnetic mea-
surements. In their method, the plasma current distribution is
approximated by using a few filament currents. In Luxon and
Brown's approach [3], the plasma current is modeled using
distributed sources. The non-linear GradeShafranov equation is
solved repeatedly to search the best current density profile. If the

plasma geometry possesses a symmetry property (axial or helical) a
stream function can be introduced to describe themagnetic field. In
the case of an axisymmetric torus, this leads to the well known
Grad- Shafranov equation [11e20]:
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where 2pj is the poloidal flux, �2pF ¼ IP is the net poloidal current
flowing in the plasma and the toroidal field coils, and P¼ P(j) is the
thermal pressure. Note that the toroidal field is not determined by
the Grade Shafranov equation. F2(j) and P(j) are arbitrary func-
tions of jwhich occur as source terms on the right hand side of the
Grad-Shafranov equation. The simplest analytic solutions are ob-
tained with pressure and current profiles which are linear in the
flux function of j, the so-called Solov'ev profiles. These solutions
have been extensively studied (e.g. Refs. [4,6]), and have given very
useful insights, for instance in the study of plasma shaping effects
in spherical tokamaks. Unfortunately, the Solovev's profiles corre-
spond to the unrealistic situation where the toroidal current has a
jump at the plasma edge [21e34].We focus on pressure and current
profiles which are quadratic. In this work, a method is proposed to
compute highly accurate numerical solution of the Grad-Shafranov
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equation by using the Chebyshev collocation method. We have
described a circular cross section of tokamak and present numerical
result of magnetic surfaces on the IR-T1 tokamak and compare the
results with an analytical solution and then calculate the Shafranov
shift using aminimization procedure based on the Newtonmethod.

2. Approximation of the magnetic surfaces based on
analytical solution

The solutions of GradeShafranov equation analytically can be
used for theoretical studies of plasma equilibrium, transport, and
Magnetohydrodynamic stability. The existing exact solutions have
arisen from a variety of allowed current density profiles or a variety
functional of source functions. In this section we apply the analytic
solution to the Grad-Shafranov. The several analytic solutions that
exist depend on specific choices for F2(j) and P(j) which occur in
source term on the right hand side of the Grad-Shafranov equation.
We have chosen the arbitrary functions P(j) and F2(j) as quadratic
function of j as also suggested by Atanasiu et al. [8] and Guazzotto
et al. [9]. Specifically, we write:
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where R0 and a are major radius and minor radius of torus,
respectively. Here Paxis,jaxis and baxis are constants related to the
values P,j and F2 of on axis andB0 is the vacuum toroidal field at the
geometric center of the plasma. Note that for a vacuum toroidal
field baxis ¼ 0 and B4 ¼ B0(R0/(R0 þ rcosq)). With plasma pressure
the toroidal field is given by B4 ¼ B0(R0/(R0 þ rcosq))(1 þ baxisj

2/
jaxis
2 )1/2.
On the magnetic axis R ¼ Raxis, j ¼ jaxis giving

B4 ¼ Baxis(1þ baxis)1/2. Here Baxis ¼ B0(R0/Raxis) is the vacuum field at
R¼ Raxis. We see that baxis is a measure of the plasma diamagnetism
(if baxis<0) or paramagnetism (if baxis > 0).

The Grad-Shafranov equation reduces to
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where baxis ¼ 2m0Paxis=B20. The next step is to introduce normalized
variables: R2 ¼ R20x and Z ¼ ay. Equation (3) can be rewritten as
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where ε ¼ a/R0 and
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The parameters a andg also have physical meanings, with a~bP,
where bP is the poloidal beta, and g~2(q/ε)2(dBf/Bf) is the
normalized diamagnetism. These connections to the physical
quantities of interest make it possible to choose reasonable values
for a and g [9].

The solution to Equation (4) is found by separation of variables:
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p Þr and for up-down symmetric case

YmðyÞ ¼ cosðkmyÞ; (7)

Here, km is the mth separation constant. The Xm(r) equation re-
duces to:
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The solutions for Xm(r) of Equation (8) are Whittaker functions
[10].

XmðrÞ ¼ amWlm;mðrÞ þ bmMlm;mðrÞ: (9)

The am and bm are unknown expansion coefficients and in this
model m ¼ 1/2. Guazzotto proposed only three terms for m, and
then j can be written as:
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where am, bm and km are nine unknown coefficients which must be
determined. By settingk1¼0.13, k2 ¼ 0.12 and k3 ¼ 0.10. The first six
of them can be obtained from boundary conditions. For boundary
condition we assume that j ¼ 1 on the plasma surface. The IR-T1
tokamak is a small air-core transformer tokamak with circular
cross section and without conducting shell and divertor where
R0 ¼ 45 cm, a ¼ 12.5 cm. Numerical results of magnetic surfaces on
the circular cross section of tokamak as IR-T1 are displayed in Fig. 1.

3. Chebyshev collocation formulation of the Grad-Shafranov
equation with quadratic pressure and current profiles

We consider a circular cross section of tokomak which can be
presented in plane (R,Z) as the following domain.

U ¼
n
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o
; (11)

In order to solve Equation (1), the following quasi-cylindrical
coordinates transformation is considered, i.e.

	
R ¼ R0 þ rcosq
Z ¼ r sin q

0 � r � a;0 � q � 2p: (12)

The cross section in quasi-cylindrical coordinates system is
shown in Fig. 2.

By considering these coordinate system the Equation (1)
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By substituting relations (2) into Equation (13) this equation can
be written as
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