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h i g h l i g h t s

� A novel energy conservation and optimization engine is proposed using smart grid functionalities.
� This paper presents an advanced Volt-VAR Optimization (VVO) solution using Particle Swarm Optimization algorithm.
� The energy conservation is achieved through Conservation Voltage Reduction as substantial subpart of VVO.
� To accurately weight the optimization engine sub-parts, Fuzzification technique is employed.
� 33-node test feeder is employed for a complete day in the presence of six different operating scenarios.
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a b s t r a c t

This paper aims to present a novel smart grid adaptive energy conservation and optimization engine for
smart distribution networks. The optimization engine presented in this paper tries to minimize distribu-
tion network loss, improve voltage profile of the system and minimize the operating cost of reactive
power injection by switchable shunt Capacitor Banks using Advanced Metering Infrastructure data.
Moreover, it performs Conservation Voltage Reduction (CVR) and minimizes transformer loss. To accu-
rately weight the optimization engine objective function sub-parts, Fuzzification technique is employed
in this paper. Particle Swarm Optimization (PSO) is applied as Volt-VAR Optimization (VVO) algorithm.
Substantial benefits of the proposed energy conservation and optimization engine include but not limited
to: adequate accuracy and speed, comprehensive objective function, capability of using AMI data as
inputs, and ability to determine weighting factors according to the cost of each objective sub-part. To pre-
cisely test the applicability of proposed engine, 33-node distribution feeder is used as case study. The
result analysis shows that the proposed approach could lead distribution grids to achieve higher levels
of optimization and efficiency compared with conventional techniques.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, the advent and expansion of smart grid technologies
have enabled the development of new energy efficiency improve-
ment technologies for power distribution networks. The organic
growth of this well-designed layer of intelligence over utility assets
enables a range of smart grid’s fundamental applications to emerge
[1]. Faced with diverse technological, organizational, and business
issues that adversely affect their bottom line, electric power utili-

ties are contemplating immediate changes and/or upgrades of their
technologies, business processes, and organization [2]. In recent
years, many electric power utilities have upgraded and improved
the operation of their distribution grids using smart grid technolo-
gies such as Energy Management System (EMS), Distribution Man-
agement System (DMS) and Substation Automation (SA). Some
have improved their grid resolution by using technologies enabled
by such components of smart grid as Advanced Metering Infras-
tructure (AMI). While electric power utilities continually move to
integrate novel smart grid functionalities according to their road
maps, applying smart grid components and technologies necessi-
tate electric power utilities to seek new optimization and energy
saving techniques that are in-line with their current implementa-
tion of smart grid technologies. Moreover, by increasing energy
generation costs as well as electricity price in many countries,
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distribution companies have to increasingly seek optimal loss min-
imization techniques based on smart grid distributed command
and control topology. The primary concern of most electric power
utilities is to find a cost-effective optimization solution for optimal
operation of their existing grids.

One of the well-known distribution network energy optimiza-
tion technique traditionally used by electric power utilities is
Volt-VAR Optimization (VVO). Recent VVO solutions include an
advanced optimization technique that optimizes voltage and/or
reactive power (VAR) of a distribution network based on predeter-
mined aggregated feeder load profile. This can be accomplished
using Volt-VAR Control Components (VVCC) such as load tap
changers (LTC) of transformer, Voltage Regulators (VRs), Capacitor
Banks (CBs) and other existing Volt-VAR control actuators within
distribution substations and/or along distribution feeders.

On the other hand, one of the well-known energy saving tech-
nique that has been taken into consideration by many utilities in
the last two decades is ‘‘Conservation Voltage Regulation”, ‘‘Con-
servation Voltage Reduction” or ‘‘CVR”. ANSI C 84.1 standard [3]
has defined the acceptable ranges of voltage at termination points
(e.g. 114–126 V in North America). Based on that, CVR tries to
decrease consumer’s voltage levels into the lower limits of ANSI
range, i.e. 114–120 V, to reduce energy consumption without
expecting changes in customer’s consumption behavior. As CVR
control actuators such as LTCs and VRs could be categorized as
Volt-VAR Control Components, and as CVR and VVO objectives
are well-matched, many utilities suggest considering CVR as a part
of VVO objective. With the emergence of smart grid technologies
within distribution networks, and given their quasi real-time com-
mand & control capabilities, it is now conceivable to propose new
smart grid adaptive VVO solutions that would be able to optimize
distribution network more effectively.

In recent years, various noteworthy researches performed to
study and develop new energy optimization solutions for distribu-
tion grids [4–14]. For instance, [12] presents a very interesting
Honey-Bees Mating Optimization (HBMO) algorithm for multi-
objective Volt-VAR control of distribution networks by considering
Distributed Generators (DGs) but, it mainly focused on daily
approach rather than a quasi-real-time approach. In another great
study [13], a fuzzy adaptive Particle Swarm Optimization applied
for VVO of distribution networks using DGs but this work focused

only on daily scenarios. Some papers such as [14] investigated new
approaches for real-time voltage control in automated distribution
networks but they do not consider other VVO objectives such as
loss reduction and energy conservation through CVR. Another
applicable study [15] proved that Demand Response (DR) can boost
system node voltages during peak hours which provide extra
opportunity to perform VVO. However, it did not perform any
VVO approach. Reactive power compensation issue studied in
[16] to minimize active power loss of wind farms and to find set
points of each wind turbine through Particle Swarm Optimization
(PSO) algorithm. Although this study is practical, it did not cover
all recent VVO objectives. Impact of Electric Vehicle (EV) penetra-
tion on recent AMI-based VVO solution studied in [17] by applying
a real-time co-simulation monitoring platform that is comprised of
measurement aggregator, VVO engine with Improved Genetic
Algorithm (IGA) and control components modeled in a Real-time
Digital Simulator (RTDS). The approach used in [17] is more
applicable as its VVO objective function is closer to reality.
However, this paper did not take voltage deviation minimization
into account.

Some papers focused on the optimization technique [18–25]
rather than smart grid adaptability of their solution. Several stud-
ies applied intelligent techniques such as Multi Agent System for
their Volt-VAR Control [26–29] approach and some aimed to assess
CVR plans but they assessed CVR separate from VVO [30–35].
Although some research papers have tried to address different
aspects of Smart Grid and their specifications [27–31,34–40]
before IEEE 2030 standard [40], it can be concluded that from liter-
ature survey that more theoretical work is needed to describe new
practical Smart Grid-based VVO solution. In other words, there is a
salient gap between conventional VVO and new Smart Grid adap-
tive VVO solutions. On the contrary, most VVO approaches studied
by various utilities and/or literatures are Centralized such as [4–6
,9,11–14,18–24]. In centralized VVO, the optimization and control
processing system is placed in a central controller unit such as
Distribution Management System (DMS) that is typically so called
‘‘Utility Back Office”. The back office uses related measurement
data taken from load premises (i.e. termination points) to find
the best possible settings for Volt-VAR Control Components (VVCC)
to achieve desired optimization and conservation aims. These opti-
mal settings are then being sent to specified Volt-VAR control

Nomenclature

Sil;t apparent power loss (kVA)
Ploss,l,t active power loss of feeder-l at time-t (kW)
Qloss,l,t reactive power loss of feeder-l at time-t (kVAR)
S complex power (kVA)
V voltage magnitude (V)
P active power (kW)
Q reactive power (kVAR)
C cost ($)
I current (A)
Vbase base voltage of system (V)
Sl,t power limit of feeder-l at time-t
Vvel velocity of particle is PSO
q off-nominal turn ratio of OLTC and VR
tap tap unit
DV voltage change
PTrans-VR active power loss of VR
bic;t integer value for capacitor bank units
Dqic;t VAr value for each bank unit
Qi

c;t capacitor bank capacity
a, b, c, d weighting factors

u1, u2 acceleration constants in PSO
r1, r2 random values (between 0 and 1)
Loss loss
dev deviation of voltage
[B] branch current matrix
[BIBC] bus-injection to branch-current matrix
[BCBV] branch-current to bus-voltage matrix
G, Load generator, load
X position of particle
Min, Max minimum, maximum
DG distributed generation
END last nodes of feeder
CVR conservation voltage reduction set
VR voltage regulator
Fuzzy Fuzzification factor
c,k capacitor bank, iteration
i, j indices for buses
I, J indices for the last buses
t, T time interval, last time interval
l, L feeder number, last feeder
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