Applied Energy 173 (2016) 386-405

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling

Dušan Strušnik^{a,*}, Milan Marčič^b, Marjan Golob^c, Aleš Hribernik^b, Marija Živić^d, Jurij Avsec^a

^a University of Maribor, Faculty of Energa Technology, Hočevarjev trg 1, SI-8270 Krško, Slovenia

^b University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, SI-2000 Maribor, Slovenia

^c University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova ulica 17, SI-2000 Maribor, Slovenia

^d J.J. Strossmayer University of Osijek, Mechanical Engineering Faculty in Slavonski Brod, Trg Ivane Brlić-Mažuranić 2, HR-35000 Slavonski Brod, Croatia

HIGHLIGHTS

• Steam ejector pump and electric liquid ring vacuum pump are analysed and modelled.

- A supervised machine learning models by using real process data are applied.
- The equation of ejector pumped mass flow from steam turbine condenser was solved.

• The loss of specific energy capable of work in a SEPS or LRVP component was analysed.

• The economic efficiency analysis per different coal heating values was made.

ARTICLE INFO

Article history: Received 26 December 2015 Received in revised form 21 March 2016 Accepted 10 April 2016 Available online 16 April 2016

Keywords: Ejector Machine learning Mixing section Operating principle Thermodynamic analysis Vacuum pump

ABSTRACT

This paper compares the vapour ejector and electric vacuum pump power consumptions with machine learning algorithms by using real process data and presents some novelty guideline for the selection of an appropriate condenser vacuum pump system of a steam turbine power plant. The machine learning algorithms are made by using the supervised machine learning methods such as artificial neural network model and local linear neuro-fuzzy models. The proposed non-linear models are designed by using a wide range of real process operation data sets from the CHP system in the thermal power plant. The novelty guideline for the selection of an appropriate condenser vacuum pumps system is expressed in the comparative analysis of the energy consumption and use of specific energy capable of work. Furthermore, the operating costs of the vacuum pump systems and may serve as basic guidelines for the selection of an appropriate condenser vacuum pump system of a steam turbine.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A steam condenser is an important subset of a condensing steam turbine. Its main purpose is to maintain the prescribed vacuum condition of around 0.01 MPa by evacuating exhaust gases from the steam turbine [1]. Exhaust gases are multiphase gases, comprising a condensable and a non-condensable gas phase. The condensable gas phase includes dry and wet vapour. Water vapour is removed from the turbine condenser through its condensation and by pumping the condensate into the boiler feeding system

* Corresponding author. E-mail address: dusan.strusnik@gmail.com (D. Strušnik). [1]. Non-condensable gases are evacuated by means of a vacuum pump system. Two steam vacuum pump systems are most frequently used in practice, namely the steam ejector pump system (SEPS) and the liquid ring vacuum pump system (LRVP) [1]. Some other authors have analysed in their research the operation of vacuum pump systems. Dennis et al. [2] have analysed the SEPS by mathematical methods. The LRVP for Tokamak have analysed and designed by Khan et al. [3]. Zhu et al. [4] and Chong et al. [5] proposed a 2D exponential model to predict the velocity distribution in ejector, however the pressure is still assumed to be uniform in the radial direction. Sözen et al. [6] explored the exergy analysis of an ejector-absorption heat transformer using artificial neural network approach. We didn't find the article that compare the SEPS

Nomenclature

Abbreviations		
ANN	artificial neural networking	
ANFIS	adaptive network-based fuzzy inference system	
СНР	combine heat and power	
LRVP	liquid ring vacuum pump	
MAE	mean absolute error	
MF	membership functions	
MSE	mean square error	
PID	proportional-integral-derivative	
R^2	correlation coefficient	
RMSE	root mean square	
SCADA	supervisory control and data acquisition	
SEPS	steam ejector pump system	
Parameters		
A	narrowest Laval nozzle cross section area. m ²	
A ₂	inlet diffuser cross sectional area, m ²	
C ₁	steam speed at the exit from the Laval nozzle, m/s	
C ₂	inlet diffuser mixed gas speed, m/s	
$e_{in,LRVP}$	amount of specific energy capable of work in the LRVP,	
0.	kJ/kg	
eloss,p	kJ/kg	
h	gas enthalpy, J/kg or kJ/kg	
h _b	boiler steam specific enthalpy, kJ/kg	
$h_{\rm in,p}$	specific enthalpy of a gas mixture to a specific part, k]/kg	
$h_{\rm out,p}$	specific enthalpy of a gas mixture from a specific part, k1/kg	
h″	turbine exhaust steam specific enthalpy, kI/kg	
h_0	specific enthalpy of motive steam. I/kg	
h_1	specific enthalpy of steam Laval nozzle expansion. I/kg	
h_{1s}	specific enthalpy of steam isentropic Laval nozzle	
15	expansion, I/kg	
h_3	diffuser outlet mixed gas specific enthalpy, J/kg	
$h_{3'}$	isentropic specific enthalpy of diffuser outlet mixed gas,	
h₄	specific enthalpy of numped gas 1/kg	
I.	investment cost. EUR	
m _{non in}	mass of the non-condensable gas entering the turbine	
	condenser. kg	
m _{non-out}	mass of non-condensable gas pumped form the turbine	
	condenser. kg	
m_{tot-c}	total mass of the non-condensable gas of the turbine	
lot-c	condenser. kg	
п	LRVP impeller speed, rpm	
p_c	pressure in the turbine condenser, Pa or MPa	
p_{in}	pressure on the suction side of the LRVP, Pa	
p_{out}	pressure of the pumped gas on the pressure side of the	
1 out	LRVP, Pa	
p_{1}, p_{4}, p_{x}	pressure in the mixing section, Pa	
<i>p</i> ₀	inlet motive steam pressure, Pa	
<i>p</i> ₂	diffuser inlet mixed gas pressure, Pa	
<i>p</i> ₃	exhaust ejector mixed gas pressure, Pa	
Pgen	generated power in the case of SEPS motive steam	
-	expansion in the turbine, kW	

P_{IRVP}	LRVP power consumption, kW
am _{non-in}	mass flow of non-condensable gas penetrating into the
1 1011-111	turbine condenser, kg/s
am _{non out}	mass flow of the numbed non-condensable gas from the
Y mnon-out	turbine condenser $k\sigma/s$
am	mass flow of the number condensable gas kg/s
am	motive steam mass flow through the Laval pozzle kg/s
qm ₀	machi protok črnano plinasto zmosi LDVD kg/s
qm _{LRVP}	numped as mass flow light
qm_4	pulliped gas mass now, kg/s
qv	volumetric flow rate of the pumped out gas, m3/n
qv _{non-gas}	volumetric flow rate of the pumped non-condensable
	gas, m ³ /h
$qV_{\rm H_2O}$	volumetric flow rate of the pumped condensable gas,
	m ³ /h
R ₀	motive steam gas constant, J/(kg K)
$R_{\rm mix2}$	gas constant of the gas mixture in the mixing section,
	J/(kg K)
R _n	gas constant of the non-condensable gas, J/(kg K)
S _{in,p}	specific entropy of a gas mixture to a specific part,
-	J/(kg K)
Sout,p	specific entropy of a gas mixture from a specific part,
	J/(kg K)
t	time, minute, second
Т	temperature, K
Ta	ambient temperature, K
T _c	temperature in the turbine condenser, K
To	inlet motive steam temperature. K
T_2	diffuser inlet mixed gas temperature. K
v	inlet diffuser specific volume of the mixed gas. m^3/kg
V _c	turbine condenser volume, m ³
Vcell	LRVP impeller blade cell volume, m ³
Ω _c	density of non-condensable gas in the turbine con-
rι	denser, kg/m ³
0	density of the numbed non-condensable gas, kg/m^3
$\rho_{\rm HOII-OUL}$	density of the pumped condensable gas, kg/m^3
P H ₂ 0	
Subscript	and superscripts
B C	article
d, c	differential
нр	high pressure
i k	iterations
ј, к I D	low pressure
M	Mach number
MD	middle pressure
M	Mach number in the mixing section
1VI2	output value
0j	pattern
μ, s t	target value
ч	diffusor isontropic officional
//dif-is	I DVD electromechanical officiency
″lem	LAVE Electromechanical eniciency
$\eta_{Laval-is}$	Lavai nozzie isentropic eniciency
<i>x</i> ₀	motive steam specific field ratio
x_{mix2}	specific field ratio of the gas mixture in the mixing
	Sectional an additionally non-metadamentation and
> E _{electric}	consumed of additionally generated energy at an annual

and LRVP power consumptions in the CHP system in thermal power plant with machine learning algorithms by using real process data.

Simulations models copying the functioning and behaviour of a real vacuum pumping system was designed using the supervised machine learning algorithms and real process data. The real process data was obtained from the supervisory control and data acquisition system (SCADA) [7], comprising the information on the operation of a CHP system in thermal power plant in Slovenia. SCADA [7] contains more than 850 data groups on the operation of a CHP system in thermal power plant and are constantly recorded on an hourly basis 365 days a year. The data on the 2013/2014

level in case of 6000-h yearly operation

Download English Version:

https://daneshyari.com/en/article/6683165

Download Persian Version:

https://daneshyari.com/article/6683165

Daneshyari.com