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HIGHLIGHTS

« Battery model parameters and SOC co-estimation is investigated.

« The model parameters and OCV are decoupled and estimated independently.
« Multiple timescales are adopted to improve precision and stability.

« SOC is online estimated without using the open-circuit cell.

« The method is robust to aging levels, flow rates, and battery chemistries.
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A key function of battery management system (BMS) is to provide accurate information of the state of
charge (SOC) in real time, and this depends directly on the precise model parameterization. In this paper,
a novel multi-timescale estimator is proposed to estimate the model parameters and SOC for vanadium
redox flow battery (VRB) in real time. The model parameters and OCV are decoupled and estimated inde-
pendently, effectively avoiding the possibility of cross interference between them. The analysis of model
sensitivity, stability, and precision suggests the necessity of adopting different timescales for each esti-
mator independently. Experiments are conducted to assess the performance of the proposed method.
Results reveal that the model parameters are online adapted accurately thus the periodical calibration
on them can be avoided. The online estimated terminal voltage and SOC are both benchmarked with
the reference values. The proposed multi-timescale estimator has the merits of fast convergence, high
precision, and good robustness against the initialization uncertainty, aging states, flow rates, and also
battery chemistries.
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Extensive studies have been conducted aimed at the
improvement of cell performance, mainly in the field of electrode

1. Introduction

Battery storage has been an essential technique for the renew-
ables penetration, transportation electrification, and smart grid
establishment. Driven by the urgent demand, battery technology
has been growing rapidly toward high performance and low cost.
Among different flavors of battery chemistries, the all-vanadium
redox flow battery (VRB) proposed by Skyllas-Kazacos [1,2] and
co-workers has shown great potential due to the unique merits
including elimination of cross contamination, independent capacity
and output power design, tolerance to deep discharge, high energy
efficiency and long life cycle [3,4].

* Corresponding author.
E-mail address: K].Tseng@pmail.ntu.edu.sg (KJ. Tseng).

http://dx.doi.org/10.1016/j.apenergy.2016.03.103
0306-2619/© 2016 Elsevier Ltd. All rights reserved.

modification, membrane enhancement, and electrolyte solution
update [5-7]. Some important issues of the VRB technology in real
application have yet to be adequately addressed however. The state
of charge (SOC), as one important state to be monitored in battery
management system (BMS), is essential to assess the battery condi-
tion and to avoid overcharge and/or over-discharge. Measurement
of electrolyte conductivity and spectrophotometric properties were
proposed by Skyllas-Kazacos and Kazacos [8] to determine battery
SOC under lab testing conditions. The two half-cell solution poten-
tials were further calibrated for SOC monitoring by Corcuera and
Skyllas-Kazacos [9]. These methods monitor the SOC of each half-
cell and aim at detecting any imbalance between the two individual
half-cell electrolytes that would lead to capacity loss. In real
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application, the overall SOC of cell is also vital considering its impli-
cation on the short- and long-term energy management. Regarding
online SOC determination, open circuit voltage (OCV) measurement
is straightforward and has been widely used in commercial prod-
ucts [10]. This method, however, relies on the assumption that
the two half-cell solutions are balanced and at the same state of
charge. Additional open-circuit cells and sensors are also needed
to be installed thus adding more complexity to the battery config-
uration. Furthermore, the open-circuit cell approach can only be
used with flow batteries where the electrolytes are stored in exter-
nal reservoirs and pumped through a cell stack where the charge-
discharge reactions take place. Coulomb counting (CC) is a simple
technique and implementable on low-cost micro controllers, but
suffers from troubles like uncertainty in initial state, high sensitiv-
ity to measurement noise, as well as error accumulation over time.

In recent works [11-21], SOC was estimated in real time for
lithium-ion batteries by the equivalent circuit models (ECMs) based
observers. This category of methods is fundamentally achieved with
two steps. First, an accurate model is established to reproduce the
transient behavior of battery. Till now, only a few publications can
be found concerning ECMs applied to the VRB although they have
already been frequently attempted on Li-ion batteries. Wei and
Xiong et al. [22-24] presented a simple circuit model with a simple
thermal model included. Zhang et al. [25] discussed a comprehen-
sive ECM by taking the transient process, shunt current and vana-
dium iron diffusion into account. Mohamed et al. [26] modeled the
dynamics of VRB including activation polarization and concentra-
tion polarization with a second-order ECM. In the second step, the
adaptive filters, such as extended Kalman filter (EKF) [11-13],
unscented Kalman filter (UKF) [13,14], particle filter (PF) [15-17],
and some other extensions [18-21], are applied to observe the SOC
inaclose loop approach. Such ECM-based observers effectively over-
come the shortcomings of SOC-OCV mapping and CC technique.
However, one common defect is that the model parameters are
either prescribed by theoretical values or identified offline and left
without adaption. As the battery parameters change continuously
with working conditions and self-aging, the lack of adaption of them
will deteriorate the estimation accuracy significantly. The online
identification of model parameters has been focused recently, albeit
limited, to improve the precision of SOC estimation. The model
parameters and SOC/OCV are integrated together for joint estima-
tion [26-28] or dual estimation [29-32]. However, the integration
can cause cross interference between the model parameters and
SOC/OCV and thus substantially compromise the regression stabil-
ity. The joint estimation can also cause large-scale matrices calcula-
tion and accordingly bring more parameterization effort.

In this study, a novel multi-timescale estimator is proposed to
online adapt the model parameters and estimate battery SOC
simultaneously. The proposed method is data-driven type and is
free from the constraint of using additional open-circuit cells for
OCV determination. Unlike other traditional methods, the OCV
and model parameters are identified with three independent esti-
mators to avoid the cross interference, while SOC is estimated by
the look-up table of SOC versus OCV. As another merit, the SOC
estimator is implementable without exact information on the cell
capacity, which is indispensable in most of the existing ECM-
based observers. Theoretical analysis on sensitivity, stability and
precision are executed to explore the performances of each inde-
pendent estimator. Based on this, different timescales are applied
to enhance each estimator and to release computational burden.

The rest of the paper is organized as follows. Section 2 presents
the OCV estimator and associated sensitivity analysis. Section 3
discusses the identification of model parameters and proposes
the multi-timescale estimator based on the analysis of model pre-
cision and stability. Section 4 describes the experimental setup and
details while the verification is presented in Section 5.

2. Independent OCV estimator
2.1. Battery modeling

To simplify the battery model configuration to the greatest
extent while keep sufficient precision, the first-order RC model
which has been used for Li-ion and NiMH battery is adopted in this
paper. It has to be mentioned, however, that the method proposed
here is applicable to a broad range of higher-order battery models.

The structure of the applied first-order ECM is shown in Fig. 1.
The voltage source represents the OCV which is SOC and tempera-
ture dependent. Ry, Rp, and C,, are the model parameters to be iden-
tified. Specifically, Ry is the internal resistance that describes effect
of current excitation within the cell stack and is a function of tem-
perature, SOC and aging state. The parallel resistor capacitor (RC)
network is used to represent any transient dynamics involved in
the electrochemical process of VRB. The constant phase element
(CPE) and Warburg impedance term which provide more detailed
description of the dynamic process is omitted in this study aiming
at reducing model complexity and enhancing numerical stability.
However, it will be verified in the following sections that the
applied model is still with high precision if appropriately parame-
terized despite the simplification.

2.2. OCV estimation
In this section, an independent OCV estimator is introduced.

The electrical behavior of the first-order ECM can be expressed
by the following state equations:
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where I; denotes the load current which is defined as positive for
discharge and negative for charge throughout the paper, Voc
denotes the OCV, V, denotes the polarization voltage across the
RC network, while V; is the terminal voltage. Eq. (1) can be rewritten
in the discrete-time form as:
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where t; is the sampling time of onboard data, n denotes the user-
defined sampling interval used to update the OCV. Thus, the time-
scale of OCV estimator can be calculated as At; = nt;. At any time
step, the below relationship holds according to Eq. (2):
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Substituting Eq. (4) into Eq. (3) yields:
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Fig. 1. Schematic diagram of the first order ECM.
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