
A genetic algorithm for topology optimization of area-to-point heat
conduction problem

R. Boichot a, b, *, Y. Fan c

a Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble, France
b CNRS, SIMAP, F-38000 Grenoble, France
c LTN Nantes, La Chantrerie, rue Christian Pauc BP 90604, 44306 Nantes Cedex 3, France

a r t i c l e i n f o

Article history:
Received 23 January 2015
Received in revised form
9 May 2016
Accepted 15 May 2016
Available online 27 May 2016

Keywords:
Genetic algorithm
Topology optimization
Heat conduction
Area-to-point
Optimal configuration

a b s t r a c t

This paper presents a way of solving the classical area (volume)-to-point heat conduction problem by the
means of a simple Genetic Algorithm (GA) in square configuration. After a short description of the nu-
merical method, the optimal solutions proposed for minimizing the peak or mean temperature of a
domain are presented. The effects of the conductivity ratio and the filling ratio on the configurations of
the conductive tree are also analyzed and discussed. A numerical benchmark is then established to assess
the influence of mesh resolution and the reproducibility of the GA optimization. Results show that GA is
capable of proposing solutions having almost the same cooling effectiveness for different mesh resolu-
tions or random seed generators. GA is also relevant compared to other optimization techniques pre-
sented here. It can be considered as a simple, easy to adapt and robust but computation time consuming
method for addressing the general area (volume)-to-point heat conduction problem.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

The problem of cooling a continuous heat generating area (or
volume) is widely recognized in electronic industries because the
accumulation of generated heat, if not timely removed, will cause
severely damage of the electronic components. One usual solution
is to integrate a certain quantity of highly conductive material in
the area (volume) to drain the generated heat to a heat sink (point)
by pure heat conduction. The cooling effectiveness depends not
only on the quantity (filling ratio, f) and quality (conductivity ratio,
kp/k0) of the available highly conductive material, but also on the
topological configuration of the material to form the conducting
path. How to determine the optimal configuration of the highly
conductive material subjected to different objectives (e.g. mini-
mum thermal resistance, minimum peak temperature, etc.) within
the framework of the general “area (volume)-to-point” heat con-
duction problem has received a great attention in the literature.

The issue was analytically studied by proposing a “constructal
approach” through first determining the shape of the optimal
rectangular elemental areas and then assembling them scale by

scale to pave the whole surface [1]. The final optimal shape of the
conducting path turns out to be tree-like networks, not inferred by
assumptions but deduced by optimization. The fundamental con-
structal theory [2,3] was followed and extended in various aspects
through formulating different objective functions, releasing the
constraints or adding degrees of freedom [4]. These extensive
analytical efforts offer an elegant way of solving the basic area
(volume)-to-point problemwith reduced global thermal resistance
and enhanced cooling effect. Nevertheless, the analytical method
becomes mathematically difficult, sometimes impossible, when
dealing with irregular or unspecified geometries.

So emerges the idea that classic analytical approaches may
benefit frommodern numerical computing by addingmore degrees
of morphologic freedom. The numerical methods consist in freely
paving the surface to be topologically optimized with the only
constraint of the meshing, and so, the computational power avail-
able. The first attempt in this direction was made by analogy with
fluid flow in river drainage basins [5]. After, the bionic optimization
method was developed based on a gradient attraction to enhance
heat drain topology efficiency [6,7]. Within the same class of local
attraction algorithm different authors [8,9,10], successively pro-
posed cellular automaton (CA) algorithms driven by thermal gra-
dients, by temperature or by both. It was reported that the CA
algorithms (including bionic optimization) can offer a simple way
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(in terms of computational efforts) to obtain a sub-optimal but
acceptable solution to the area-to-point problem with rational
values of conductivity ratio (kp/k0) [11]. Nevertheless, the draw-
backs of the CA algorithms are apparent: no clue implies that the
final configuration is the optimum, i.e. no objective function to
minimize is explicitly used but only local attraction based on
intuitive hypotheses.

More recently, a variety of numerical algorithms were proposed
to tackle this problem. To list some, simulated annealing (SA)
method [12], Solid Isotropic Material with Penalization (SIMP) [13],
method of moving asymptotes (MMA) [14e15] and SIMP model
with an aggregated objective function approach (AOF) [16] were
used to tackle this topology optimization problem. A systematic
and quantitative robustness analysis of solutions of various opti-
mization algorithms was provided [17].

Meanwhile, another class of numerical optimization algorithms
that is extensively used in heat transfer problems [18] -the Genetic
algorithm (GA)-has rarely been applied for solving this heat con-
duction problem. Genetic algorithms, based on the Darwin’s theory
of evolution [19], are characterized by a poor sensitivity to local
minima so that the global best solutions can theoretically be
reached. Moreover, GA is well-adapted to objective functions with a
huge number of parameters (or dimensions) and non-differentiable
(discrete) problems. The pioneer work reported in literature [12]
showed that GA proposed better solutions compared to those of
bionic optimization, especially for high conductivity ratio condi-
tions. Due to the computational time consuming nature of GA
however, only a few cases were studied, with limited meshing
fineness, limited values of conductivity ratio (kp/k0 ¼ 3; 10; 100)
and filling ratio (f ¼ 0.1). In fact, besides the fitness (the objective
function), a number of more intrinsic parameters in the sense of
numerical methods (e.g. the mutation probability, the crossing
probability, the rate of selection of the best individuals, etc.) have to
be assessed to optimize the convergence of the GA. In-depth in-
vestigations and systematic analyses are still in need in this area
due to the strong influence of these parameters on convergence.

The goal of this study is to formulate a GA for efficiently solving
the area-to-point heat conduction problem on one hand, and to
analyze the effects of various parameters of practical use on the
evolved topology on the other hand. We shall first present the GA
method with a general 2D case, appropriate for introducing the
notations and for describing in detail the basic principles of

optimization. Then, the performances of the algorithm will be
assessed for the minimization of two different objective functions:
the peak temperature and the mean temperature across the
domain. The effects of different conductivity ratios (kp/k0 ¼ 2; 10;
50; 250) and filling ratio (f ¼ 0.1; 0.3; 0.5) on the optimal config-
uration of conductive paths will be analyzed and discussed. After
that, a dedicated numerical benchmark will be developed to
investigate the meshing sensitivity and the reproducibility of GA
method. Comparison with other methods addressing this problem
is also proposed. Finally, technical remarks and main conclusions
will be summarized.

2. Genetic algorithm

The GA is coded using software suite Matlab, assisted by the
Parallel Computing toolbox (www.mathworks.com/products/
parallel-computing/). The basic idea is to imitate the natural se-
lection and survival of the fittest that exists in the genetics of the
species. A synthesis of GA principles, applications and examples can
be find in literature [20].

2.1. Geometry and boundary conditions

The sketch of a typical area-to-point heat conduction problem to
be solved by GA is given in Fig. 1. The entire domainwas discretized
into small and homogeneous square elements, each element hav-
ing determinate conductivity, uniform temperature and heating
rate. In this study, a mesh of 100 � 50 square elements was used,
considering a compromise between calculation time and precision.
Other mesh resolutions (12� 25, 25� 50 and 100� 200) were also
assessed and the effects of mesh resolution on the complexity of
optimal conductive trees will be discussed in the later section.

Five kind of elements are defined to cover the entire calculation
domain, as described below.

� Heat sink elements (blue): cells with a constant temperature
(Tsink ¼ 293 K) and a thermal conductivity equal to kp. The
isothermal heat sink has an aperture width of 20% of one side of
the domain.

� Symmetry elements (red): the right boundary of the domain
shown in Fig. 1 is defined as symmetry to represent a square

Nomenclature

A, R Non-dimensional thermal resistances e
H Height of the domain m
kp Thermal conductivity of highly conductive material

W m�1K�1

k0 Thermal conductivity of heat generating material
W m�1K�1

kad Thermal conductivity of adiabatic elements
W m�1K�1

L Size of police
Tmax Temperature of the hottest element of the domain K
Tmean Mean temperature of the domain K
Tsink Temperature of the heat sink K
p Heat generation rate per unit volume or surface

W m�3

f Volume or surface fraction of high conductivity
material

Fig. 1. Geometry and mesh used for this study. Note the symmetry on the right border.
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