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a b s t r a c t

The paper investigates the thermal stability of a horizontal layer of a Newtonian nanofluid in the linear
and non-linear regimes. A finite depth of fluid layer is considered which incorporates the effect of
Brownian motion and thermophoresis slip mechanism along with no nanoparticle flux boundary con-
ditions. For the linear stability a normal mode analysis is performed whereas a two term Fourier series
analysis has been used for the nonlinear analysis. In case of linear stability, analytic expression for
thermal Rayleigh number (Ra) in terms of various pertinent parameters are obtained. The graphs are
presented to visualize the effect of these parameters on the critical value of the thermal Rayleigh number
(Racr). Thermal Nusselt number in nonlinear analysis has also been plotted and discussed.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the late 19th century Maxwell [9], in his pioneering theo-
retical studies, proposed that the heat transfer properties of ordi-
nary fluids can be enhanced by suspending metal particles in them.
His claims were based on the fact that in comparison to any ordi-
nary cooling fluid, the thermal conductivity of any metal is
comparatively high. Though his idea had practical applications, it
hadmany implications too. The large size of the particles could lead
to clogging, drastic pressure drops, settling and premature wear on
channels and components. These complications were reduced
considerably by the use of nano-scale (1�100 nm) sized particles
due to advent of technology of manufacturing them either physi-
cally or chemically. These render much larger relative surface area
thanmicro-sized particles improving the heat transfer properties of
ordinary coolants used till date. Choi [5,6] claimed the nanofluids as
the next generation heat exchangers owing to the superior prop-
erties of these leading to savings of energy and cost, over the base
fluids. Contrary to the milli- and microsized particle slurries
explored in the past, nanoparticles are relatively close in size to the
molecules of the base fluid, and thus can realize very stable sus-
pensions with little gravitational settling over long periods of time.

With their very alluring properties, nanoliquids have fascinated
physical as well as analytical researches in the last two decades or
so. The nanoparticles used were copper, silver, gold, copper-oxide,
alumina, SiC, in base fluids such as water, ethylene-glycol, tou-
lene, etc.. The nanoparticle concentration used ranged from 0.11 vol
% to 4.3 vol%, with the enhancement in thermal conductivity from
10% to 40%. Analytical researches claimed quite a few reasons for
the observed phenomenon of thermal conductivity enhancement,
but the two-component non-homogenous model proposed by
Buongiorno [3] was accepted with less conflicts. Moreover, Magyari
[8] also commented on homogenous nanofluid models (which
neglected slip effects) applied to convective heat transfer. The non-
homogenous Buongiorno’s model was supported and extended by
Tzou [15,16], Nield and Kuznetsov [10,11], Yadav et al. [17] and
Agarwal and Bhadauria [1]. Tzou [15,16] studied the onset of con-
vection in a horizontal layer of a nanofluid uniformly heated from
below. Nield and Kuznetsov [10], Yadav et al. [17] and Agarwal and
Bhadauria [1] investigated the fluid layer for convective stability
under thermal equilibrium, whereas Nield and Kuznetsov [11] for
local thermal non-equilibrium conditions.

Convective flows found widely in astrophysical, geophysical or
industrial interest involve fluid layer. Thus studies on thermal
convection of fluid layer have been undertaken by Chandrashekhar
[4], Kim and Choi [7] and Shivakumara et al. [13,14]. Since we look
upon nanofluids to be used in the above fields in future, study of
nanofluids layer turns significant. So far, majority of the studies in
the case of nanofluids were performed under the assumption that
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the nanoparticle concentration can be controlled actively at the
boundaries which is quite difficult to establish physically. Thus
arose the need tomodify the boundary conditions assumed. In their
very recent work, Nield and Kuznetsov [12] came out with a new
set of boundary condition which assume that there is no nano-
particle flux at the plate and that the particle fraction value there
adjusts accordingly. With such an assumption, the presence of
oscillatory convection turns oblivious due to the absence of the two
opposing agencies affecting instability. The study was further
promoted by Agarwal et al. [2].

In the present article, we have done both the linear and non-
linear stability analysis in a nanofluid layer under Rayleigh
Be0nard problem, assuming that the nanoparticles being suspended
in the nanofluid with no nanoparticle flux at the boundaries.

2. Governing equations

We consider a horizontal layer of nanofluid, confined between
two horizontal boundaries at z ¼ 0 and z ¼ d, heated from below
and cooled from above. The boundaries are impermeable and
perfectly thermally conducting. The fluid layer is extended infi-
nitely in x and y-directions, and z-axis is taken vertically upward
with the origin at the lower boundary. Th and Tc are the tempera-
tures at the lower and upper walls respectively, where Th> Tc. The
resulting conservation equations will be [3]; [12]:
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where v¼ (u,v,w) is the fluid velocity. Assuming the temperature to
be constant and thermophoretic nanoparticles flux to be zero at the
stress-free boundaries [12], the boundary conditions on T and 4

shall be:
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¼ 0 at z ¼ 0; (5)
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v4

vz
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vT
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¼ 0 at z ¼ d; (6)

The present nanofluid model has been taken from earlier liter-
ature presented by Buongiorno, in which it was assumed that
nanofluid is dilute mixture of nanoparticles i.e. 4 ≪ 1. Therefore,
due to low concentration of nanoparticle, momentum equation for
nanofluid remains same as for base fluid. Later, Nield and Kuznet-
sov [10] introduced/modified the buoyancy term for natural con-
vection problem as weighted sum of densities of base fluid and
nanoparticles with Boussinesq approximation to the base fluid
density. The other conservative equations (mass, energy) contain
the effect of slip mechanisms (Brownian motion and thermopho-
resis) due to nanoparticle migration.

For non-dimensionalizing the variables we take

ðx�; y�; z�Þ ¼ ðx; y; zÞ=d; t� ¼ taf
.
d2;af ¼

kf
ðrcÞf

Nomenclature

Latin symbols
d dimensional layer depth
p pressure
Da Darcy number
Pr Prandtl number
NA modified diffusivity ratio
DT Thermophoretic diffusion coefficient
NB modified particle-density increment
DB Brownian Diffusion coefficient
Le Lewis number
Rm basic density Rayleigh number
Rn concentration Rayleigh number
g Gravitational acceleration
Ra thermal Rayleigh number
T nanofluid temperature
Tc temperature at the upper wall
Th temperature t the lower wall
v nanofluid velocity
(x,y,z) Cartesian coordinates
t time

Subscripts
b basic solution
f Fluid phase.
p Particle phase

Superscripts
* dimensional variable
’ perturbation variable

Operators
V2 v2

vx2 þ v2

vy2 þ v2

vz2

V2
1

v2

vx2 þ v2

vz2

Greek symbols
b proportionality factor
4 nanoparticle volume fraction
m viscosity of the fluid
u frequency of oscillations
a wave number
j stream function
(rc)f Heat capacity of the fluid
(rc)p Heat capacity of the nanoparticle material
rf fluid density
rp nanoparticle mass density
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