Applied Energy 171 (2016) 184-199

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind-photovoltaic-energy storage system considering the uncertainty and demand response

AppliedEnergy

Liwei Ju^{a,*}, Zhongfu Tan^a, Jinyun Yuan^b, Qingkun Tan^a, Huanhuan Li^a, Fugui Dong^a

^a North China Electric Power University, Beijing 102206, China

^b Departamento de Matemática, Universidade Federal do Paraná, Centro Politécnico, CP: 19081, 81531-980 Curitiba, Brazil

HIGHLIGHTS

• Our research focuses on Virtual Power Plant (VPP).

• Virtual Power Plant consists of WPP, PV, CGT, ESSs and DRPs.

• Robust optimization theory is introduced to analyze uncertainties.

• A bi-level stochastic scheduling optimization model is proposed for VPP.

• Models are built to measure the impacts of ESSs and DERPs on VPP operation.

ARTICLE INFO

Article history: Received 12 December 2015 Received in revised form 16 February 2016 Accepted 5 March 2016

Keywords: Virtual power plant Energy storage system Uncertain Demand response Bi-level model

ABSTRACT

To reduce the uncertain influence of wind power and solar photovoltaic power on virtual power plant (VPP) operation, robust optimization theory (ROT) is introduced to build a stochastic scheduling model for VPP considering the uncertainty, price-based demand response (PBDR) and incentive-based demand response (IBDR). First, the VPP components are described including the wind power plant (WPP), photovoltaic generators (PV), convention gas turbine (CGT), energy storage systems (ESSs) and demand resource providers (DRPs). Then, a scenario generation and reduction frame is proposed for analyzing and simulating output stochastics based on the interval method and the Kantorovich distance. Second, a bi-level robust scheduling model is proposed with a double robust coefficient for WPP and PV. In the upper layer model, the maximum VPP operation income is taken as the optimization objective for building the scheduling model with the day-ahead prediction output of WPP and PV. In the lower layer model, the day-ahead scheduling scheme is revised with the actual output of the WPP and PV under the objectives of the minimum system net load and the minimum system operation cost. Finally, the independent micro-grid in a coastal island in eastern China is used for the simulation analysis. The results illustrate that the model can overcome the influence of uncertainty on VPP operations and reduce the system power shortage cost by connecting the day-ahead scheduling with the real-time scheduling. ROT could provide a flexible decision tool for decision makers, effectively addressing system uncertainties. ESSs could replace CGT to provide backup service for the WPP and PV, to smooth the VPP output curve and to improve the WPP and PV grid connection by its charging-discharging characteristics. Meanwhile, IBDR and PBDR could smooth the load curve to the maximum extent, link the generation side with the demand side to minimize abandoned power value and reach the optimum benefit of VPP operation.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Since energy and environmental problems become very serious, distributed energy resources (DERs), especially wind power and solar photovoltaic power, are playing increasingly important roles in the energy structure. However, constraints of small installed capacity, intermittence, uncertainty and other characteristics, make entrance and operation of the power market difficult for DERs [1]. Thus, the virtual power plant (VPP) was proposed as a new technology for DERs in the power market [2]. Without changing the DERs grid connection method, VPP integrates different types of DERs, such as distributed power sources, energy storage

^{*} Corresponding author at: North China Electric Power University, Chang Ping District, Beijing 102206, China. Tel.: +86 10 18911639155; fax: +86 10 61773118. *E-mail addresses*: Liwei_Ju@ncepu.edu.cn (L. Ju), jin@ufpr.br (J. Yuan).

Nomenclature

Nomenclature			
		$D_{i,t}^J$	deployed load curtailment of DRP i in step j at time t
Abbrevia	itions	D_i^{\min}	minimum load reduction of DPR <i>i</i>
VPP	virtual power plant	D_i^{imax}	maximum load reduction of DPR <i>i</i>
DR	demand response	0 ^E	cost of DPR <i>i</i> participating in demand-side reserve
PBDR	price-based DR	$P_{i,t}$	scheduling
IBDR	incentive-based DR	$\alpha^{R,dn}$	cost of DPR <i>i</i> participating in down demand-side reserve
WPP	wind power plant	$P_{i,t}$	scheduling
PV	photovoltaic generators	$o_{i}^{R,up}$	cost of DPR <i>i</i> participating in up demand-side reserve
CGT	convention gas turbine	$P_{i,t}$	scheduling
ESSs	energy storage systems	0	grid-price of WPP at time t
DRPs	demand resource providers	PW,t Opv	grid-price of PV at time t
MILP	mixed integer linear programming model	PPV,t	discharge miss of ECCs at time t
DERs	distributed energy resource	$\rho_{ESS,t}^{ull}$	discharge price of ESSS at time t
		$ ho_{\mathrm{ESS},t}^{\mathrm{chr}}$	charge price of ESSs at time t
Set		$ ho_{{ m CGT},t}$	grid-price of CGT at time t
s, t	index for time	φ_W	power loss rate of WPP
i	index for DPR	φ_{PV}	power loss rate of PV
i	index for step	φ_{CGT}	power loss rate of CGT
k	index for scenario	v	wind speed
W	index for WPP	arphi,artheta	shape factor and scale factor
PV	index for PV	P(v)	probability of the wind speed v
CGT	index for CGT	v_a, v_b	wind speeds limitation of state v
ESS	index for ESSs	v_{in}	cut-in speed of wind turbine
		v_{rated}	rated speed of wind turbine
Variahle		v_{out}	cut-off speed of wind turbine
π^{PB}	cost of DPPs participating in PPDP at time t	v_t	actual speed of wind turbine at time t
π_t	cost of DPRs participating in IDDR at time t	g_R	rated output of wind turbine
n_t	Lost of DPRS participating in IDDR at time t	α, β	shape parameters of <i>Beta</i> distribution
L_t	load reduction of DDP i	θ_t	solar irradiance at time t
$\Delta L_{i,t}$		u, σ	mean value and standard deviation of irradiance
$\Delta L_{i,t}^{\kappa,an}$	up demand-side reserve of DPR <i>i</i> at time <i>t</i>	θ_c, θ_d	solar irradiance limits of state θ
$\Delta L_{i,t}^{R,up}$	down demand-side reserve of DPR <i>i</i> at time <i>t</i>	η_{PV}	efficiency of PV
g _{CGT t}	power output of CGT at time t	S _{PV}	total area of PV
adis	discharge power of ESSs at time t	f_1	the objective function of the maximum VPP operation
&ESS,t		- 1	revenue
$g_{ESS,t}^{chi}$	charge power of ESSs at time t	$R_{W,t}$	operation revenue of WPP at time <i>t</i>
$g_{W,t}$	output of WPP at time t	$R_{PV t}$	operation revenue of PV at time t
$g_{PV,t}$	output of PV at time t	RESS t	operation revenue of ESSs at time t
$g_{VPP,t}$	output of VPP at time t	$R_{CCT,t}$	operation revenue of CGT at time t
$g_{GC,t}$	power output of system purchasing from generation	v.	the weight of scenario s
	company	π^{pg}_{ccr}	power generation cost of CGT at time t
$\Delta L_{PB,t}$	load change produced by PBDR at time t	π^{ss}_{ccr}	startup-shutdown cost of CGT at time t
Q_t	storage electricity of ESS at time t	acct. bcct	<i>r C</i> _{CCT} cost coefficient of CGT power generation
$D_{CGT,t}$	startup–shutdown cost of CGT at time t	wcold	and startur cost of CCT
$T_{CCT,t}^{\text{off}}$	continuous downtime of CGT at time t	N _{CGT}	cold startup cost of CG1
T_{CPR}^{OOT}	continuous operation time of CGT at time $t - 1$	NCPP	hot startup cost of CGT
T^{off}	continuous shutdown time of CCT at time $t = 1$	T_{CPP}^{\min}	minimum allowable downtime of CGT
$^{I}CPP,t-1$		T ^{cold}	cold startup time of CCT
$\Delta L_{IB,t}$	reserve capacity provided by DRPs	- CPP	
$g^*_{CGT,t}$	revised output of CG1 at time t	g_{CGT} , g_{CGT}	T_T upper and lower limitation of CG1
$\Delta L_{i,t}^{*E}$	revised IBDR output plan participating in energy market	$\Delta g^+_{CPP}, \Delta g$	g _{CPP} upper and lower limitation of CGT
$\Delta L^{*R,dn}$.	$M^{*R,up}$ revised IBDR reserve capacity participating in	M_{CPP}^{on}	minimum startup time of CGT
<i>i</i> ,t ,-	reserve market	Moff	minimum chutdown time of CCT
H₊	system net load at time t	NI CPP	initial storage electricity of ESS
		Q ₀ odis	nullal stolage electricity of ESS
Paramet	or	$\rho_{ESS,t}$	power loss rate of Ess discilling at tille t
rurumen	domand price electic	$ ho_{ESS,t}^{cnr}$	power loss rate of ESS charging at time t
P^0	electricity price before DRDR	\bar{g}_{FV}^{chr}	maximum discharging power of ESS at time t
r _t		$\bar{\sigma}^{dis}$	maximum charging nower of FSS at time t
L_s^{o}	load demand before PBDR	SEV,t	
ΔL_s	electricity changes of demand after PBDR	$\Delta L_{PB,t}^{max}$	maximum load change at time t
ΔP_t	electricity changes of price after PBDR	$\Delta \overline{L}_{PB}, \Delta \underline{L}_{PB}$	_{PB} pickup/drop off rate of load produced by PBDR
$D^{j,\min}$	minimum acceptable load reduction of DPR i in step i	ΛL_{pp}^{max}	maximum load change
i Di.max	and all dealered lead and 'lead on the CDDD'	gmax	maximum output of VPP at time t
$D_{i}^{j,\dots,i}$	sum of all deployed load curtailments of DPK <i>i</i> in step <i>j</i>	gmin	minimum output of VPP at time t
$\Delta L_{i,t}^{j}$	load reduction of DPR i in step j at time t	$S_{VPP,t}$	up reserve coefficients of load. WPP and PV
		• 1,• 2,• 3	-r coefficients of found, with und f

Download English Version:

https://daneshyari.com/en/article/6683279

Download Persian Version:

https://daneshyari.com/article/6683279

Daneshyari.com