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h i g h l i g h t s

� A systematic control-oriented model for the HTV was built.
� A Markov chain model learns power transition probability recursively.
� The Kullback–Leibler divergence rate determines the transition probability update.
� Reinforcement learning (RL) was applied to optimize the control strategy.
� The strategy improves fuel efficiency and works real time.
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a b s t r a c t

To realize the optimal energy allocation between the engine-generator and battery of a hybrid tracked
vehicle (HTV), a reinforcement learning-based real-time energy-management strategy was proposed. A
systematic control-oriented model for the HTV was built and validated through the test bench, including
the battery pack, the engine-generator set (EGS), and the power request. To use effectively the statistical
information of power request online, a Markov chain-based real-time power request recursive algorithm
for learning transition probabilities was derived and validated. The Kullback–Leibler (KL) divergence rate
was adopted to determine when the transition probability matrix and the optimal control strategy
update in real time. Reinforcement learning (RL) was applied to compare quantitatively the effects of dif-
ferent forgetting factors and KL divergence rates on reducing fuel consumption. RL has also been used to
optimize the control strategy for HTV, compared to preliminary and dynamic programming-based control
strategies. The real-time and robust performance of the proposed online energy management strategy
was verified under two driving schedules collected in the field test. The simulation results indicate the
proposed RL-based energy management strategy can significantly improve fuel efficiency and can be
applied in real time.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As a promising solution to global warming and air pollution,
hybrid electric vehicles (HEVs) are becoming increasingly popular.
They have energy storage systems (ESSs) to reduce emissions and
fuel consumption. Generally, two types of ESS are used in HEVs:
gasoline and electricity. Energy management systems (EMS) play
a crucial role in affecting performance, cost effectiveness, and ada-
patability of HEVs by controlling and distributing energy among
multiple ESSs. An optimal energy management strategy can either
improve fuel economy or reduce emissions for a HEV. To improve

the online efficiency performance of HEVs, a highly efficient and
real-time energy management strategy is necessary [1].

1.1. Literature review

Numerous researchers around the world have conducted
research focused on the energy management strategies of HEVs
[2]. Generally, energy management strategies for HEVs can be clas-
sified into two major types: rule based and optimization based
[3,4]. With humans’ early engineering experience, rule-based
strategies are simple and widely used for different types of HEVs.
For example, Jalil proposed a rule-based energy management strat-
egy by setting thresholds for power split between the engine and
battery [5]. Reported fuel economy has improved by 6% in the
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highway cycle and 11% in the urban cycle for a series HEV. Trovão
presented an integrated rule-based meta-heuristic optimization
approach for a multilevel EMS in a multi-source electric vehicle
[6]. Hoffman designed a new rule-based energy management strat-
egy based on a combination of the rule-based and the equivalent
consumption minimization strategies (ECMS). Compared to the
dynamic programming (DP) based strategy, Hoffman’s design
requires significantly less computation time with a similar result
to DP [7]. However, the performance from any rule-based strategy
is generally sub-optimal and highly dependent on proper design of
the rules, so efforts have increasingly focused on improving the
optimization-based strategy, which theoretically guarantees
optimality.

The DP-based energy management strategy can determine the
best fuel economy once the driving cycle is given [8–10]. Tsai [8]
used the DP algorithm to search the energy management strategy
with different design criteria for an extended-range electric vehi-
cle, and a multi-mode switch strategy was extracted from the DP
results. However, the real-time and robust performance of this
strategy cannot be guaranteed. Koot [10] generated and stored
electrical energy only at the most suitable moments and demon-
strated a 2% fuel reduction by applying a DP algorithm in a HEV.
However, Serrao declared, because of the high computation load
and adverse computation direction, the DP algorithm is impossible
to use for real-time control [11].

Based on the instantaneous Hamiltonian function, Pontryagain’s
minimum principle (PMP) makes real-time control possible
[12,13]. The core technology in PMP explores the accurate value
of a parameter called co-state. Serrao [11] made a comparative
analysis of the co-state and revealed the essential equivalence
between PMP and DP. Liu and Sharma also elaborated that the
co-state in PMP is just the derivative of the cost function in DP with
respect to the state variable [14,15]. Kim and Xu [16,17] showed
the optimization performance from PMP can be very close to that
of DP through calculating the appropriate co-state. However, the
iterative calcalations keep PMP from being implemented online
directly. Based on the same theoretical background of PMP, ECMS
was proposed to associate current electricity usage with future fuel
consumption [18–20]. Rizzoni [19,20] developed a new adaptive
strategy by adding an on-the-fly algorithm into the ECMS frame-
work to estimate the equivalent co-state according to driving
conditions.

To make online optimization feasible, many advanced intelli-
gent algorithms, such as stochastic dynamic programming (SDP)
[21,22], game theory (GT) [23], and reinforcement learning (RL)
[24,25], have been proposed to settle the energy management
problem for multiple types of HEVs. Lin [21] optimized the power
management problem for a parallel HEV through an SDP algorithm,
but the high computational burden makes it difficult to implement
online. Liu [26,27] compared the performance of RL and DP as well
as RL and SDP, and the simulation results showed the computa-
tional time of RL is much less than that of PMP while the control
performance from the RL alogorithm is much closer to that of the
DP algorithm. However, the transition probability matrix in the
RL algorithm cannot be immediately updated online; thus, the
robustness of this strategy cannot be guaranteed for different driv-
ing conditions.

1.2. Motivation and innovation

The purpose of this study is to propose a real-time and robust
energy management approach via Markov chain-based recursive
algorithm and RL to enhance the energy management efficiency
and performance for a hybrid tracked vehicle (HTV). Three per-
spectives are contributed in this paper. First, to use effectively
the statistical information of the online driving event, a Markov

chain-based real-time power-request recursive algorithm for
learning transition probabilities has been derived. Second, a Kull-
back–Leibler (KL) divergence rate technique is developed for decid-
ing when to update the transition probability matrix (TPM) and the
optimal control strategy in real time. The RL algorithm-based
online updating strategy for TPM is developed in a systematic
way. RL is applied to validate quantitatively the influences on fuel
economy with regard to forgetting factors and KL divergence rates.
The proposed RL-based energy management strategy has been
evaluated through comparison to the stationary online and DP-
based control strategies. The real-time and robust performance of
the energy management strategy is validated under three different
driving schedules collected in the field test.

1.3. Organization of the paper

The remainder of this paper is organized as follows. Section 2
describes the configuration of the HTV and the systematic model-
ing approach. The real-time recursive algorithm for learning tran-
sition probability and the Kullback–Leibler (KL) divergence rate
are illustrated in Section 3. The verification and evaluation of the
proposed energy management strategy are reported in Section 4,
and Section 5 concludes this paper.

2. HTV modeling and optimal control problem formulation

2.1. Vehicle configuration

The HTV architecture is shown in Fig. 1. The power sources
come from two parts: the engine-generator set (EGS) and the bat-
tery pack. The EGS consists of a 300 kW diesel engine and a 270 kW
permanent magnet generator. The 50 Ah lithium–ion battery pack
has 470 V rated voltage [27]. Detailed modeling of the EGS and bat-
tery are illustrated in Section 2.2. The essential parameters of the
HTV are listed in Table 1 [28].

2.2. Modeling of the HTV

A systematic control-oriented model is established for the HTV
to evaluate the control performance of different energy manage-
ment strategies. Because this study is focused largely on the perfor-
mance of the control strategy, it is assumed that the EMs are only
power-conversion devices with the same average efficiency
[27,28]. The EGS, battery, and power-request models are described
as follows.

2.2.1. Modeling the EGS
The equivalent electric circuit illustrated in Fig. 2 comprises the

diesel engine, permanent magnet generator, and three-phase full-
wave rectifier. The engine outputs 300 kW rated power at the
speed of 3100 r/min and 2200 Nm rated output torque within
the speed range from 650 r/min to 2100 r/min. The generator out-
puts 270 kW rated power within the speed range from 2500 r/min
to 3100 r/min and 960 Nm rated torque within the speed range
from 0 to 2500 r/min [27]. The dynamics of the EGS are described
by the following equation [29]:

KeIg � KxI
2
g ¼ Tg

Ug ¼ Keng � KxngIg

0:1047 Je
i2eg
þ Jg

� �
dng
dt ¼ Ten

ieg
� Tg

nen ¼ ng=ieg

8>>>>>><
>>>>>>:
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where Ke is the coefficient of the electromotive force; Kxng is the
electromotive force, in which Kx = 3PLg/p; Lg is the synchronous
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