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a b s t r a c t

In this work, the size effect on the effective through-thickness conductivity of heterogeneous plates
expressed in second-order HashineShtrikman bounds and a third-order correlation approximation is
studied. By taking into account the homogeneous temperature boundary conditions, the exact Green
operator for the plate is first established. Then, the respective bounds and correlation approximation are
constructed. With the help of the method based on the fast Fourier transform (FFT), the bounds and
correlation approximation for the effective through-thickness conductivity are computed for the plates
reinforced or weaken randomly either by spherical particles or unidirectional fibers. The numerical re-
sults show that the size effect of the effective through-thickness conductivity is more significant than the
one of the effective in-plane conductivity.

� 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Macroscopic (effective) properties of randomly inhomogeneous
materials are generally hard to be determined theoretically,
because of the random irregular nature of their microgeometry.
Hence, variational approaches have been developed to construct
upper and lower bounds on the possible values of the effective
properties of the composites, which may involve multi-point cor-
relation parameters describing the microstructure of a composite,
besides the properties of the component materials [1e8]. n-point
correlation functions are related to the probability of finding n
points in certain relative arrangement, i.e. in the spaces of certain
components. One-point correlation information about a particular
component is just its volume proportion. High-order correlation
information about a composite is hard to collect and to include into
an estimate, hence one has to restrict oneself to the lowest-order
correlation functions, in particular, the two-point and three-point
ones, the values of which have been tabulated for a number of
practical microgeometries (see e.g. Ref. [7]).

Alternatively, effective medium approximation schemes have
been developed to estimate the effective properties of the com-
posites [7,9e13]. Refined approximations incorporate correlation
information about composites’ microgeometry [2,7,14e18].

Developed upon the work of Brown [19], Sen and Torquato [15]
derived strong contrast expansions for the effective conductivity
tensor of macroscopically anisotropic two-phase media. Pham and
Torquato [18] extended further the approach to the n-phase com-
posites. From the expansions, they proposed the three-point cor-
relation approximation for the effective conductivity of isotropic
composites that, in the case of two-phase materials, agrees well
with numerical results for a number of periodic and random
composites, even when the contrast between the phases is infinite
and their volume proportions are near percolation thresholds. The
simple approximation reduces to the well-known Maxwell and
self-consistent ones for the respective asymmetricmatrix-inclusion
composites and symmetric cell mixtures, and it obeys second-order
HashineShtrikman as well as third-order three-point correlation
bounds over all the ranges of parameters.

One is interested in the effect of restricted domains when the
sizes of heterogeneities are no more negligible compared with a
characteristic size of the domain, leading to a well-defined size
effect. This size effect has been studied for plates, because the ge-
ometry allows to extend precisely the results obtained in infinite
domains; this size effect appears when the size of heterogeneities
has the order of the thickness of the plate. For plate problems, first
order and second order bounds were extended in the case of elastic
properties [20e23]. In Ref. [24], we extended PhameTorquato
three-point correlation approximation and second order Hashine
Shtrikman bounds, accounting for the size effect and insulation
boundary condition, on the effective in-plane conductivity of het-
erogeneous plates. In this work we continue to develop the
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approach in order to study the size effect on through-thickness
conductivity of heterogeneous plates.

In Section 2, a Green operator for the heterogeneous plate with
homogeneous temperature boundary condition is constructed. The
HashineShtrikman-type bounds on the through-thickness effec-
tive conductivity are extended in Section 3. Section 4 develops the
correlation approximation for the through-thickness effective
conductivity. Numerical applications are provided in Section 5,
followed by conclusions.

2. A Green operator for heterogeneous plate

In a three-dimensional Euclidean space R3, let us consider a
heterogeneous plate consisting of spherical or unidirectional in-
homogeneities embedded in amatrix phase. Thematrix, referred to
as phase 1, and inhomogeneity, denoted by phase 2, are assumed to
be individually homogeneous and have the linear thermal-
conduction behavior described by a local isotropic Fourier’s law

qðxÞ ¼ cðxÞEðxÞ: (1)

Here the local intensity field E(x) is the opposite of the gradient
of temperature field T(x)

EðxÞ ¼ �VTðxÞ; (2)

while local heat flux vector field q at position x must verify the
following energy conservation equation

V$qðxÞ ¼ 0 (3)

in the case of stationary thermal conduction without heat source.
The local scalar conductivity at position x is expressible as

cðxÞ ¼
X2
a¼1

caIðaÞðxÞ; (4)

where IðaÞðxÞ is the indicator function of phase a (a¼ 1 or 2) which
is defined in such a way that IðaÞðxÞ ¼ 1 if x in phase a and
otherwise IðaÞðxÞ¼0. For statistically homogeneous media,
hIðaÞðxÞi ¼ va, where angular brackets denote an ensemble average.

For later use, we denote by Z the three-dimensional domain
occupied by a simple or representative volume element (RVE) of
the heterogeneous plate. More precisely, the latter can be defined
by

Z ¼
�
x˛R3; x ¼ ðx1; x2; x3Þ; xa˛

i
� la

2
;
la
2
½; x3˛� �

t
2
;
t
2
½
�
; (5)

where a¼ 1 or 2; l1, l2 and t are the length, width and thickness of Z,
respectively. We designate by u ¼ ]�l1/2,l1/2 [�] �l2/2,l2/2[ the
middle surface of Z and by vu the boundary of u. The lateral
boundary vZl of Z is defined by vZl ¼ vu � ]�t/2, t/2[. The top and
bottom surfaces vZ� of Z are vZ� ¼ u � (�t/2) (see Fig. 1).

In order to determine the effective through-thickness conduc-
tivity of the heterogeneous plate, let Z be subjected to the zero
reference temperature (T ¼ 0) on the bottom surface vZ� and a
constant temperature (T ¼ T0) on the top surface vZþ. In addition, a
periodic boundary condition is imposed on the lateral boundary vZl
of Z. The determination of the HashineShtrikman-type bounds
(Section 3) as well as the correlation approximation (Section 4) for
the through-thickness conductivity of composite plates with
possible finite size (thickness) effect needs first to construct the
Green operator for the heterogeneous plates with zero temperature
boundary conditions. This conduction problem defined on Z can be
expressed in the following form

8>>>>>><>>>>>>:

V$qðxÞ ¼ 0 in Z;
qðxÞ ¼ cðxÞEðxÞ; EðxÞ ¼ E0 þ EðxÞ in Z;
EðxÞ ¼ �VTperðxÞ in Z;
TperðxÞ periodic on vZl;
qðxÞ$n anti� periodic on vZl;
TperðxÞ ¼ 0 on vZ�:

(6)

Here, E0 being a constant macroscopic gradient field is chosen in
such away that the non-zero through-thickness component is E03 ¼
T0=t and E01 ¼ E02 ¼ 0: By introducing the reference medium of
conductivity c0, the conduction problem (6) is equivalent to8>>>>>><>>>>>>:

V$qðxÞ ¼ 0 in Z;
qðxÞ ¼ c0EðxÞ þ PðxÞ; EðxÞ ¼ E0 þ EðxÞ in Z;
EðxÞ ¼ �VTperðxÞ in Z;
TperðxÞ periodic on vZl;
qðxÞ$n anti� periodic on vZl;
TperðxÞ ¼ 0 on vZ�:

(7)

In (7), the polarization p(x) is given by p(x) ¼ [c(x) � c0]E(x). To
solve the problem (7), we decompose (7) into two auxiliary prob-
lems. The first one is obtained from (7) with p(x) ¼ 0 while the
second one is provided from (7) by setting E0 ¼ 0.

It is clear that the first auxiliary problem has a trivial solution
E(x) ¼ E0, i.e. e(x) ¼ 0. For the second auxiliary problem, due to the
linearity of the local constitutive laws, the intensity solution field
E(x) is related linearly to the periodic polarization field p(x) by

EðxÞ ¼ � 1
jZj

Z
Z

Gðx � x0Þ$Pðx0Þdx0; (8)

where jZj is the volume of Z and G is the Green operator with zero
temperature boundary conditions. Moreover, this intensity solution
field E(x) can be decomposed into 2 parts as E(x) ¼ Ep(x) þ Ec(x).
The first part Ep(x) corresponds to the intensity solution field of the
periodic boundary value problem in which the domain Z medium
with periodic boundary conditions on vZl and vZ� is undergone by
the periodic polarization field p(x). More precisely,8>>>><>>>>:

V$qpðxÞ ¼ 0 in Z;
qpðxÞ ¼ c0E

pðxÞ þ PðxÞ in Z;
EpðxÞ ¼ �VTpðxÞ in Z;
TpðxÞ periodic on vZl;
qpðxÞ$n anti� periodic on vZl; and vZ�:

(9)

By introducing the Green operator Gp with periodic boundary
conditions, the intensity solution field Ep(x) takes in the following
form

EpðxÞ ¼ � 1
jZj

Z
Z

Gpðx � x0Þ$Pðx0Þdx0: (10)

Fig. 1. Description of a representative volume element (RVE) of heterogeneous plates.
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