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h i g h l i g h t s

� A methodology is presented for building energy performance optimization.
� EnergyPlus is used as the building energy simulation program.
� Multi-objective particle swarm optimization is used as the optimization approach.
� The method is applied to a single zone case study in four climatic regions of Iran.
� Building specifications are optimized to minimize its annual energy consumption.
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a b s t r a c t

This paper proposes an efficient methodology for the simulation-based multi-objective optimization
problems, which addresses important limitations for the optimization of the building energy perfor-
mance. In this work, a mono- and multi-objective particle swarm optimization (MOPSO) algorithm is
coupled with EnergyPlus building energy simulation software to find a set of non-dominated solutions
to enhance the building energy performance. To evaluate the capability and effectiveness of the approach,
the developed method is applied to a single room model, and the effect of building architectural param-
eters including, the building orientation, the shading overhang specifications, the window size, and the
glazing and the wall material properties on the building energy consumption are studied in four major
climatic regions of Iran. In the optimization section, mono-criterion and multi-criteria optimization anal-
yses of the annual cooling, heating, and lighting electricity consumption are examined to understand
interactions between the objective functions and to minimize the annual total building energy demand.
The achieved optimum solutions from the multi-objective optimization process are also reported as
Pareto optimal fronts. Finally, the result of multi-criteria minimization is compared with the mono-
criterion ones. The results of the triple-objective optimization problem point out that for our typical
model, the annual cooling electricity decreases about 19.8–33.3%; while the annual heating and lighting
ones increase 1.7–4.8% and 0.5–2.6%, respectively, in comparison to the baseline model for four diverse
climatic regions of Iran. In addition, the optimum design leads to 1.6–11.3% diminution of the total
annual building electricity demand. The proposed optimization method shows a powerful and useful tool
that can save time while searching for the optimal solutions with conflicting objective functions; there-
fore facilitate decision making in early phases of a building design in order to enhance its energy
efficiency.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Energy is one of the most important resources used by the mod-
ern society and is the core of the economic and social activities in

the industrialized countries. In recent years, there has been an
enormous increase in the global energy demand due to industrial
development and population growth. In the context of the Euro-
pean Union efforts to reduce the growing energy expenditure, it
is widely recognized that the building sector has an important role,
accounting about 40% of the total energy consumption and 36% of
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the carbon dioxide emission [1]. In addition, most of the energy
used in buildings and construction sectors is produced from fossil
fuels, making them the largest emitter of greenhouse gases on the
planet. According to the U.S. Energy Information Administration,
energy consumption in buildings is dominated almost 57% by heat-
ing, ventilation and air conditioning (HVAC), and lighting [2]. As a
result, buildings energy efficiency improvement has become an
international big deal for designers and researchers given a high
potential for building modifications [3] by incorporating whole
building energy analyses [4] rather than analyzing a building as a
set of disconnected parts [5]. Whole building design can help archi-
tects and engineers to determine the amount of cooling, heating,
and lighting loads in order to analyze the characteristics and
energy performance of buildings. Good energy performance of
buildings is generally obtained by selecting more comprehensive
and executive decisions to decrease the energy demand. Building
designers often use whole building energy simulation programs
such as DOE-2, EnergyPlus, ESP-r, eQUEST and TRNSYS to analyze
the thermal and energy behaviors of buildings. In order to evaluate
the energy performance of a building, many effective and impor-
tant design parameters must be taken into account. Architectural
parameters are very important in reducing the building energy
consumption; but are difficult to be tackled because of the compli-
cated and nonlinear interactions of the processes [6]. An approach
known as ‘‘parametric study” may be used to investigate the build-
ing performance. According to this method, the input of each deci-
sion variable is changed to understand its effect on the design
objective functions while all other building parameters are kept
fixed. This technique can be repeated iteratively with other vari-
ables. Although studies are a useful method to explore alternative
design options and to establish parameter dependencies of the
solutions [7], it may be too time consuming and practically impos-
sible due to the large number of combinations. By coupling an
appropriate optimization procedure with a whole building energy
simulation tool, it is possible to analyze and to optimize buildings
characteristics in less time [8].

Over the past years, considerable research works have been
directed toward simulation-based optimization of building energy
consumption with the overall aim of understanding the most
appropriate building parameters and architectural configurations
to promote its energy efficiency. Nguyen et al. [9] reviewed the
simulation-based optimization methods applied to the building
performance analysis and Bandara and Attalage [6] discussed the
applicability of the optimization methodologies in the building
performance optimization. Brown et al. [10] developed an online
building optimization tool to minimize the energy use in a cost

effective manner and to evaluate the distributed energy generation
alternatives. Chantrelle et al. [11] presented a multi-criteria tool
(MultiOpt) based on the NSGA-II genetic algorithm coupled with
TRNSYS to optimize the buildings renovation. In a similar work,
Tuhus-Dubrow and Krarti [12] developed a genetic algorithm opti-
mization tool coupled with DOE-2 applied to optimize a building
shape and envelope features. Saporito et al. [13] performed a
multi-parameter study to investigate the heating energy use in
the office buildings using a thermal simulation code, named
APACHE. In another research, Shan [14] provided a methodology
to optimize the building facade with respect to triple objectives
of cooling, heating, and lighting electricity demand to achieve the
minimum annual energy cost. Kusiak et al. [15] presented a data-
driven approach for optimization of a heating, ventilation, and air
conditioning (HVAC) system in an office building using a strength
multi-objective particle swarm algorithm. In addition, Znouda
et al. [16] presented an optimization program that couples genetic
algorithm with a simplified tool for building thermal evaluation
(CHEOPS) with the purpose of minimizing the buildings energy
consumption. Karmellos et al. [17] developed a methodology and
a software tool for optimum prioritization of energy efficiency
measures based on the primary energy consumption and the initial
investment cost criteria in buildings. Moreover, Yu et al. [18] pre-
sented a novel multi-objective genetic algorithm model using
NSGA-II to optimize the energy efficiency and thermal comfort in
buildings. Magnier and Haghighat [19] used TRNSYS simulations,
the multi-objective genetic algorithm, and the artificial neural net-
work to optimize the building design. In another work, Wright
et al. [20] investigated the application of a multi-objective genetic
algorithm search method in the identification of the optimum pay-
off characteristic between the energy cost of a building and the
occupant thermal discomfort. In addition, Lu et al. [21] presented
a comparison study on two design optimization methods for
renewable energy systems in buildings, including a single objective
genetic algorithm and a multi-objectives non-dominated sorting
genetic algorithm (NSGA-II). Recently, Hamdy et al. [22] proposed
a modified multi-objective optimization approach based on
the genetic algorithm coupled with IDA ICE building performance
simulation program to minimize the carbon dioxide equivalent
emissions and the investment cost of a two-story house and its
HVAC system. Karaguzel et al. [23] integrated the whole building
energy simulation program, EnergyPlus, with GenOpt tool to min-
imize the life cycle cost of a reference commercial office building
model.

Echenagucia et al. [24] proposed an integrative approach for the
early stages of building design by means of genetic algorithm, with

Nomenclature

COP coefficient of performance
C1 cognitive learning factor
C2 social learning factor
CMI current motion influence
Fð~xÞ objective function vector
Fws composite function
f iðxÞmin minimum value of the ith objective function
f iðxÞmax maximum value of the ith objective function
Gbest global best position
~gð~xÞ inequality constraints vector
~hð~xÞ equality constraints vector
k number of objective functions
ki weighting coefficient
m number of inequality constraints

n number of decision variables
Pbest personal best position
PMI particle memory influence
q number of equality constraints
r random element
S feasible criterion space
SI swarm influence
t time
v iðtÞ velocity of ith particle
w weighted inertia
xiðtÞ position of ith particle
~x decision variables vector
X feasible decision space
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