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h i g h l i g h t s

� A methodology of building energy performance diagnosis at multiple levels is developed.
� Proposed approach is based on the building and key equipment power data rather than complicated and unreliable BA data.
� Different benchmarking methods are adopted according to respective power use feature by automatic selection algorithm.
� Faulty operation and corresponding energy saving measures of different systems are identified.
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a b s t r a c t

The proposed energy performance diagnosis is intended to identify poor energy performance in a build-
ing and pinpoint the causes to provide suggestions for building operators to implement timely repair and
maintenance. Many previous studies have probed the complicated problem of building energy perfor-
mance diagnosis to achieve energy conservation and better performance. However, few of them have
been successful because most of these methods rely on a large amount of data from an Energy
Management and Control System (EMCS), and these data are unreliable. A detailed description of the
methodology based on energy consumption data is presented in this paper along with the development
of a prototype integrated toolkit. Weekly, daily and hourly diagnoses are developed at the whole building
level, system level and component level, respectively. To validate the feasibility and applicability of the
method, a case study on an office building demonstrating the proposed method was completed and was
able to detect underperformance operation and energy waste.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The building sector is widely recognized as a major consumer of
both energy and resources [1]. Currently, the building sector takes
up 41.3% of the total primary energy in the United States and
approximately 40% in the EU (European Union) [2,3]. Experience
has demonstrated that 20% of this energy is wasted due to unno-
ticed faults and underperformance occurring at different levels of
the building [4]. Building energy performance diagnosis has grad-
ually become a useful tool that can track, detect and handle abnor-
mal systematic behavior and help operation personnel to identify
energy waste and inefficient operation. In many buildings, approx-
imately 15% of the building energy can be saved using the results of
an energy performance diagnosis [5].

Energy benchmarking plays a significant role in the process of
an energy performance diagnosis. To build a benchmark, models
are needed and better benchmarks need more precise models.
The methods of energy benchmark modeling can be universally
categorized into white box methods, black box methods and gray
box methods [6,7]. The black box methods, such as the artificial
neural network (ANN), supports vector machine (SVM) and regres-
sion method, are used when detailed building information is not
available but sufficient historical data can be provided. Especially,
ANN and SVM methods are capable of solving nonlinear problems
to predict building energy consumption, and the latter is even
effective with limited training data [8,9]. If the benchmarks have
a stringent requirement on modeling transient behavior, the RC
(Resistance-Capacitance) Network method [10,11], a gray box
method, is an ideal alternative. The white box method, also termed
as a first-principle based method, as it uses physical principles to
calculate the energy performance, requires a large amount of
specific building data. Some sophisticated simulation software
packages, such as DOE-2, EnergyPlus, BLAST, ESP-r, are often used
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to predict the energy consumption [12]. Proactive system identifi-
cation models can also be used because they are high fidelity mod-
els and computationally efficient [13]. To summarize, different
models are used for different benchmark and diagnostic purposes.

The current methods of building energy performance diagnoses
can be grouped into three categories according to the scope of their
diagnosis: whole building level diagnosis, system and component
level diagnosis and multi-level diagnosis [14].

A whole building level diagnosis normally does not need a mas-
sive amount of information on the building operation [15]. This
type of diagnosis typically requires electricity, gas or chilled water
energy consumption data at the building level and then identifies
operation problems by calculating the building energy consump-
tion deviations from that of the design intent [16]. The idea of
whole building level diagnosis has been embedded into some auto-
mated whole building diagnostic (AWBD) software, such as the
Automated Building Commissioning Analysis Tool (ABCAT) and
the Whole Building Diagnostician (WBD) [17]. ABCAT, of which
input parameters are building power consumption, cooling load,
heating load and weather data, uses first principle models to pre-
dict whole building energy consumption [18]. Many further
researches make a headway regarding the application and opti-
mization of ABCAT [16,19,20]. Unlike ABCAT, WBD uses a multi-
variable bin method that can be categorized as a black box method
for building level diagnosis. The WBE (Whole-building Energy
Diagnostician) module, one of the diagnostic modules in WBD,
classifies the loads into different variable bins and uses bin medi-
ans to gauge the expected energy consumption from each bin [21].

A whole building diagnosis only addresses the overall consump-
tion of the building. To identify and locate exactly which compo-
nent or subsystem leads to underperformance issues, a more
targeted investigation of the system or component is needed
[22,23]. John proposed an intelligent data analysis method using
the modified z-score to identify abnormal power consumption in
HVAC systems [24]. Wang et al. presented an approach that detects
different kinds of faulty operations of HVAC components through
trend data analysis and functional testing [25]. Khan et al.
employed pattern recognition techniques and ANN Ensembling
approaches to diagnose the anomalies for lighting systems and
whole building power consumption [26].

By comparison, multi-level diagnosis has the most comprehen-
sive scope and largest coverage, expanding the inspection of

energy performance from whole building level to system and com-
ponent levels. A prototype EARM-OAM (Energy Assessment and
Reporting Method’s -Office Assessment Method) enables us to have
a hierarchical diagnosis for an office building at multiple levels
[27,28]. Yan et al. proposed a novel diagnosis method for energy
information in poor buildings with limited energy use data and
some building automation data. The monthly energy performance
of a whole building and system level is examined by general rules,
such as the energy use intensity (EUI), and then the energy-
conservation potential of the HVAC components is calculated [15].

In a nutshell, previous studies of multi-level diagnoses merely
stick to the building energy performance in a fixed time span,
e.g., monthly diagnosis [15]. On the other hand, multi-level diagno-
sis requires detailed information and often relies on trend data
from Building Automation Systems (BAS). It is nonetheless the case
that the measured data from BAS is inaccurate and sensor-bias
errors frequently occur due to the encompassing nature of sophis-
ticated systems [29,30]. For example, temperature measurements
are vulnerable to ambient environmental fluctuations and pressure
signals are often obtained by intrusive measurements. Addition-
ally, the placement of flow and temperature sensors in large ducts
or pipes is another factor to consider. Besides, there are also the
issues of missing, mislabeled and distorted data from the transmis-
sion of large amounts of BAS data. By contrast, building power
measurements are more reliable and practical. Norford et al. pro-
posed two techniques for using electrical power data for FDD in
HVAC equipment. One was based on gray-box correlations of elec-
trical power with flow or other variables, and the second one relied
on physical models of the electromechanical dynamics with sub-
metered data for a pump or a fan [31,32]. The authors stated that
both methods are potentially more robust than FDD methods that
rely on temperature and flow sensors in the sense that they do not
require estimations of small temperature differences with sensors
that are subject to errors [32]. Armstrong et al. [33] developed a
device called the Non-Intrusive Load Monitor (NILM) that detects
various faults in rooftop cooling units by observing variations in
high-frequency sampled electrical data. Hence, it can be seen that
the power measurement based FDD is forging its way as a new
approach for identifying faults.

In 1992, Hart formally proposed a concept of ‘energy sub-
metering’; since then, more and more large commercial buildings
are sub-metered [34]. For example, the California Public Utilities

Nomenclature

CVr coefficient of variation
q correlation coefficient
EPI energy performance indices
HDHs heating degree hours
CDHs cooling degree hours
DAY working days in one week
Tb benchmark temperature
Tm daily mean temperature
Y weekly power consumption kW h
T daily average ambient temperature
WW day type
EAC HVAC terminal power consumption kW h
C0, C1, C2 regression coefficients
UL upper limit value
LL lower limit value
Q1 the first quartile
Q3 the third quartile
IQR interquartile range
a constant mean hourly submeter

h hour of day
xn Fourier frequency for hour
e residual
CV(RMSE) rooted mean squared errorbxi the ith prediction energy use data
xi the ith measured energy data
�x mean value of the training data
n data number of the dataset
m variable number in the regression model
CAM characteristic average method
CULLM characteristic upper-lower limit method
SRM specific regression method
AE absolute error
RE relative error
COP coefficient of performance
WTF water transportation factor
EER energy efficiency ratio
CL cooling load
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