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a b s t r a c t

The buoyant flow with zero average velocity, namely free convection, in an inclined porous layer is
studied. The heating is supplied by an internal volumetric source with a uniform distribution. The
boundaries are either isothermal at the same temperature, or the lower one adiabatic and the upper one
isothermal. The stability to small-amplitude perturbations is analysed for three-dimensional normal
modes. It is proved that the longitudinal rolls, viz. normal modes with wave vector perpendicular to the
basic flow, are the most unstable modes. It is also shown that neutrally stable transverse modes may
grow in time if the inclination angle of the layer to the horizontal is smaller than a threshold value. The
threshold angle depends on the imposed boundary conditions, isothermal/isothermal or adiabatic/
isothermal. When the threshold angle is approached from below, the neutral stability curves assume a
closed-loop shape, they gradually shrink their size and eventually collapse to a point.

� 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

A vast amount of literature has been published on the onset of
convection, due to heating from below, in a layer of saturated
porous medium (the HortoneRogerseLapwood problem [1,2]).
Comparatively little work has been done on the corresponding
problem where the convection is induced by uniform internal
heating (see the survey in Section 6.11.2 of Nield and Bejan [3]). In
fact the case of internal heating is particularly interesting,
because not only is the basic thermal gradient not constant but it
changes sign within the layer, and convection is concentrated in
that portion where that upwards vertical gradient is negative.
This asymmetry about the mid-layer level has some interesting
results, especially where heterogeneity is involved (see, for
example, Nield and Kuznetsov [4]). Also of particular interest are
those situations where the basic flow is not zero, but rather flow
is parallel to the layer boundaries. One such situation, where
there is a basic Hadley type circulation produced by an oblique
applied temperature gradient, has been studied by Parthiban and
Patil [5]. However, with one exception, we are not aware of any

published study of the related problem where the layer is in-
clined to the horizontal, and the aim of this paper is to fill that
gap. The exception is a short conference paper by Storesletten
and Rees [6]. These authors considered only the case of constant-
temperature boundary conditions, and analysed the instability to
a special kind of disturbance mode, viz. the longitudinal rolls. In
fact a comparison between this case and that where one or both
of the boundaries is held at constant flux is of interest. In the case
of bottom heating the effect of this change is readily predictable.
The basic solution is not changed. The replacement of specified
temperature to specified temperature gradient means a relaxa-
tion of a boundary condition and hence a reduction of the
eigenvalue (the Rayleigh number) in the perturbation differential
equation system. In the case of internal heating a prediction is
less readily made because the basic solution is dependent on the
thermal boundary conditions.

The case of an inclined layer subject to heating of the lower
boundary but with no internal heating has been extensively stud-
ied, and this work has been surveyed in Section 7.8 of Nield and
Bejan [3]. In particular, the linear instability of the DarcyeHadley
flow in an inclined layer was studied by Barletta and Rees [7], and
this work has guided the present investigation. We mention that
Barletta and Rees [7] developed their analysis in the wake of pre-
vious papers dealing with the convective instability in inclined
porous layers [8e14].
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2. Governing equations

Let us consider a plane porous layer with thickness H inclined an
angle f to the horizontal. We model the saturated porous medium
as homogeneous, isotropic and subject to uniform internal heating
with power per unit volume Q0 > 0. The boundary walls are
assumed to be impermeable, with the upper wall isothermal at a
temperature T0. The lower wall is either isothermal at temperature
T0, or adiabatic. A sketch of the porous layer and of the thermal
boundary conditions is displayed in Fig. 1.

The dimensionless coordinates (x, y, z), time t, temperature T,
and velocity u ¼ (u, v, w) are made dimensionless through the
scalings

ðx; y; zÞ 1
H
/ðx; y; zÞ; t

am
sH2/t; ðT � T0Þ

gbKH
amn

/T ;

u
H
am

¼ ðu; v;wÞ H
am

/ðu; v;wÞ ¼ u;
(1)

where am is the average thermal diffusivity, n is the kinematic
viscosity, b is the thermal expansion coefficient, g is the modulus of
the gravitational acceleration g, K is the permeability, and s is the
ratio between the average volumetric heat capacity of the saturated
medium and that of the saturating fluid.

According to the OberbeckeBoussinesq approximation and to
Darcy’s law we canwrite the mass, momentum and energy balance
equations as

V$u ¼ 0; (2a)

V� u ¼ V� ðTsinf bex þ Tcosf bezÞ; (2b)

vT
vt

þ u$VT ¼ V2T þ R: (2c)

The local momentum balance equation (2b) is formulated by
applying the curl operator to both sides of Darcy’s law, so that the
pressure gradient term gives no contribution. The unit vectors
along the coordinate axes are denoted as ðbex; bey; bezÞ.

The boundary conditions are expressed as

z ¼ 0 : w ¼ 0; hT � ð1� hÞ vT
vz

¼ 0;

z ¼ 1 : w ¼ 0; T ¼ 0;
(3)

where h is a switch variable that can be either equal to 1 for an
isothermal lower wall, or equal to 0 for an adiabatic lower wall.

In Eq. (2c), we introduced the internal DarcyeRayleigh number
R defined as

R ¼ gbKH3Q0
amnkm

; (4)

where km is the average thermal conductivity of the porous
medium.

3. Basic solution

Equations (2) and (3) can be solved analytically under stationary
conditions, by assuming that the temperature field depends only on
the z-coordinate, and considering the velocity field as parallel and
directed along the x-axis. Thus, we obtain

ub ¼ � R
12

�
3h� 2� 6hzþ 6z2

�
sin f bex; (5a)

Nomenclature

bex; bey; bez unit vectors along the (x, y, z)-axes
f(z), h(z) dimensionless amplitude functions, Eq. (12)
g, g gravitational acceleration, modulus of g
H layer thickness
k dimensionless wave number, ðk2x þ k2yÞ1=2
(kx, ky) components of the dimensionless wave vector, Eq. (12)
K permeability
Q0 thermal power generated per unit volume
R internal DarcyeRayleigh number, Eq. (4)
S transformed DarcyeRayleigh number, Eq. (14)
t dimensionless time, Eq. (1)
T dimensionless temperature, Eq. (1)
T0 wall temperature
u dimensionless velocity, (u, v, w), Eq. (1)
U dimensionless velocity perturbation, Eq. (7)
W z-component of U
(x, y, z) dimensionless Cartesian coordinates, Eq. (1)

Greek symbols
am average thermal diffusivity
b thermal expansion coefficient
ε dimensionless perturbation parameter, Eq. (7)
h dimensionless switch parameter: either 0 or 1
Q dimensionless temperature perturbation, Eq. (7)
km average thermal conductivity
n kinematic viscosity
x1, x2 dimensionless parameters, Eq. (17)
s heat capacity ratio
f inclination angle of the layer to the horizontal
4 transformed inclination angle, Eq. (14)
u dimensionless angular frequency, Eq. (12)

Subscripts
b basic solution
c critical value

Fig. 1. Sketch of the inclined porous layer.
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