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h i g h l i g h t s

� Estimation of equation-based energy models from data.
� Unmeasured states and parameters of building energy models are jointly estimated.
� Implicit discretization method to cope with the low sampling rate of data.
� Observability analysis of the equation-based building energy model.
� Validation using historical data from a real-life building.
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a b s t r a c t

Estimation of energy models from data is an important part of advanced fault detection and diagnosis
tools for smart energy purposes. Estimated energy models can be used for a large variety of management
and control tasks, spanning from model predictive building control to estimation of energy consumption
and user behavior. In practical implementation, problems to be considered are the fact that some mea-
surements of relevance are missing and must be estimated, and the fact that other measurements, col-
lected at low sampling rate to save memory, make discretization of physics-based models critical.
These problems make classical estimation tools inadequate and call for appropriate dual estimation
schemes where states and parameters of a system are estimated simultaneously. In this work we develop
dual estimation schemes based on Extended Kalman Filtering (EKF) and Unscented Kalman Filtering
(UKF) for constructing building energy models from data: in order to cope with the low sampling rate
of data (with sampling time 15 min), an implicit discretization (Euler backward method) is adopted to
discretize the continuous-time heat transfer dynamics. It is shown that explicit discretization methods
like the Euler forward method, combined with 15 min sampling time, are ineffective for building reliable
energy models (the discrete-time dynamics do not match the continuous-time ones): even explicit meth-
ods of higher order like the Runge–Kutta method fail to provide a good approximation of the continuous-
time dynamics which such large sampling time. Either smaller time steps or alternative discretization
methods are required. We verify that the implicit Euler backward method provides good approximation
of the continuous-time dynamics and can be easily implemented for our dual estimation purposes. The
applicability of the proposed method in terms of estimation of both states and parameters is demon-
strated via simulations and using historical data from a real-life building.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

There is a growing interest in research and industry to extract in
real-time additional insights from data collected by building
automation systems (BAS). Examples of the additional value

include real-time fault detection and diagnostics [1], energy saving
supervisory control [2–5], real-time performance validation and
energy usage analysis [6], real-time estimation of energy consump-
tion in connection with user behavior [7–9], real-time estimation
of the user behavior for improved control decisions [10–13], real-
time estimation of thermal comfort models [14]. These real-time
applications share the common goal of checking correct evolution
of energy dynamics and/or thermal comfort, and detecting

http://dx.doi.org/10.1016/j.apenergy.2016.02.019
0306-2619/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +31 15 2781823.
E-mail addresses: s.baldi@tudelft.nl (S. Baldi), s.yuan-1@tudelft.nl (S. Yuan),

Petr.Endel@Honeywell.com (P. Endel), Ondrej.Holub@Honeywell.com (O. Holub).

Applied Energy 169 (2016) 81–92

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier .com/locate /apenergy

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2016.02.019&domain=pdf
http://dx.doi.org/10.1016/j.apenergy.2016.02.019
mailto:s.baldi@tudelft.nl
mailto:s.yuan-1@tudelft.nl
mailto:Petr.Endel@Honeywell.com
mailto:Ondrej.Holub@Honeywell.com
http://dx.doi.org/10.1016/j.apenergy.2016.02.019
http://www.sciencedirect.com/science/journal/03062619
http://www.elsevier.com/locate/apenergy


anomalies and their causes [15]. To this purpose it is necessary to
develop appropriate estimation tools that can detect, online from
real-time collected data, whether the system is running according
to a nominal model, or it is deviating from it.

In building applications the practical aspect and constraints are
particularly important, since the majority of customers (building
owners, landlords and tenants, as well as facility managers and
energy service companies) are not willing to substantially invest
in the solutions, at least until a short payback period is guaranteed.
As a result, there is an opportunity for analytic engines capable of
operation on legacy BAS systems which log only limited number of
data points with limited sampling rate and resolution. While in
industry there exists a variety of rule-based solutions for the indi-
vidual BAS application listed above (e.g. Attune by Honeywell [16],
SmartStruxure Lite solution by Schneider Electric [17], envisage⁄

Energy Management System by General Electrics [18] and many
others), researches have shown that a model-based approach is
expected to provide a common basis to be shared by most of the
advanced features and outperform rule-based methods [19–22].
The model-based approach requires the development of an
appropriate model for the system dynamics, and the use of data
to interpret in real-time the model parameters and their possible
variations.

A model is a product that represents a system of interest, and
quoting George Box ‘‘all models are wrong, but some are useful”:
in the following we will elaborate on which models are useful to
our real-time purposes. Several building energy models and related
software are available, which can be categorized as steady-state
building energy simulation models and dynamic building energy
simulation models. Models like the ISO 13790 [23] fall in the first
category, because of the steady-state assumption that the building
is heated or cooled for the thermal comfort of people. Models like
EnergyPlus, TRNSYS, Modelica and RC models [24,25] fall in the
second category, because they take into account (to different
extent depending on the specific software) the dynamic behavior
of heat and mass transfer. Steady-state building energy simulation
models are used for long-term simulations and predictions, espe-
cially given the fact that in many buildings energy use is collected
on monthly or weekly basis. However, they cannot be adopted for
real-time energy monitoring and control. For real-time purposes
we need to use dynamic building energy simulation models, well
suited for buildings equipped with automated meter reading,
where data are collected at a rate typically in the range from units
of minutes to one hour. Taking into account hourly or per minute
thermal dynamics allows using these models not only for

long-term simulations and predictions, but also for real-time man-
agement and control purposes. Collection of data on a weekly or
monthly basis makes not only real-time monitoring and control
impossible, but it has been also identified as one of the main rea-
sons for having huge gaps between the estimated and the actual
building energy consumption [26].

Summarizing, we are interested in dynamic building energy
simulation models. Using the classification of Lawrence Berkeley
National Laboratory [27], when can further distinguish dynamic
building energy simulation models into:

� Procedural energy modeling (like EnergyPlus and TRNSYS).
� Equation-based energy modeling (like Modelica and RC
models).

Procedural modeling is usually more complex, because it is
based on partial differential equations. For this reason modeling
the physics is mixed with the implementation of numerical solu-
tion algorithms, and these building simulation programs typically
do not allow specifying initial conditions for all state variables,
which makes it impossible to use these models for model predic-
tive control purposes or anti windup of control action or other
optimization and monitoring tasks. Equation-based modeling is
usually simpler, because based on ordinary differential equations
with lumped parameters: this simplifying assumption allows
defining state variables, specifying their initial conditions and con-
trolling their evolution. Within the scopes of this paper, estimation
of energy models from equation-based modeling is to be preferred
over procedural modeling, because they allow easier real-time
interpretation of the (lumped) model parameters [28].

Estimation of equation-based energy models is equivalent to
estimating the parameters of the heat transfer equations (thermal
resistance, conductance etc.) and/or some variables that cannot be
measured (e.g. envelope temperatures). Estimation of equation-
based energy models from data becomes challenging when com-
bined with the following two issues:

(1) In most practical cases, many measurements are missing,
due to the expensive sensors that would be required to
acquire these measurements. For example, in building ther-
mal dynamics, it is easy to get zone temperatures, but more
difficult to get envelope temperatures. Envelope tempera-
tures can be as important as zone temperatures in under-
standing the state of the building, so it is relevant to
estimate them.

Nomenclature

Tz zone temperature
Tn neighbor zone temperature
To outside temperature
Tm building mass (envelope) temperature
Ca thermal capacitance of zone air
Cm thermal capacitance of building mass
aam conductance zone air/mass
aom conductance outside air/mass
v̂�
k predicted (augmented) state estimate

P�
k predicted covariance estimate

~yk innovation residual
Sk innovation covariance
Kk near-optimal Kalman gain
Pk updated covariance estimate
v̂k updated (augmented) state estimate
x state of the system

u input to the system
w parameters of the system
y output of the system
v process noise of the system
n observation noise of the system
f ; F state transition maps
h;H output maps
Ts sample time
vk augmented state (state and parameters)
Qk covariance of process noise
Rk covariance of observation noise
Xðk k� 1j Þ matrix of sigma vectors

Lkf h Lie-derivative of order k

dG (nonlinear) observability matrix
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