
FISEVIER

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Numerical simulation and experimental validation of a high concentration photovoltaic/thermal module based on point-focus Fresnel lens

Ning Xu, Jie Ji*, Wei Sun, Wenzhu Huang, Jing Li, Zhuling Jin

Department of Thermal Science and Energy Engineering, University of Science and Technology of China, #96 Jinzhai Road, Hefei City, Anhui Province, People's Republic of China

HIGHLIGHTS

- A point-focus Fresnel lens photovoltaic/thermal module is proposed and studied.
- The electrical model is based on the Shockley diode equation.
- The thermal model is based on a two-dimensional steady-state heat transfer model.
- An electrical efficiency of 28% and a thermal efficiency of 60% can be obtained.
- Influence of independent parameters is investigated by validated models.

ARTICLE INFO

Article history: Received 14 September 2015 Received in revised form 30 December 2015 Accepted 22 January 2016 Available online 10 February 2016

Keywords: High concentration Photovoltaic/thermal Numerical simulation Modeling and behavior

ABSTRACT

Characteristics of a high concentration photovoltaic/thermal (HCPV/T) module equipped with point-focus Fresnel lens have been investigated in this paper. Both electrical and thermal models of the module are developed by numerical methods. The electrical model is based on the Shockley diode equation, and the thermal model is grounded on a two-dimensional steady-state heat transfer model. Influences of environmental parameters and coolant water are considered in the models. The inputs of the models consist of irradiance, ambient temperature, wind speed, water temperature and mass flow rate. The outputs mainly include electrical efficiency and thermal efficiency. The simulated results are compared with experimental results and a great agreement is obtained. By the virtue of the validated models, influences of different parameters on module performance are analyzed in detail. The results show that an electrical efficiency of 28% and a thermal efficiency of 60% can be obtained by the HCPV/T module. The electrical efficiency is mainly influenced by solar irradiation rather than cell temperature. The thermal efficiency increases with the increment of irradiance, ambient temperature and water mass flow rate. On the contrary, increasing water temperature and wind speed will lower the thermal efficiency. Also, the HCPV/T module can produce hot water as high as 70 °C without decreasing the electrical efficiency seriously.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Concentrator photovoltaic (CPV) technology has been developed for over 30 years since the first modern PV concentrator was made at Sandia National Laboratories [1]. The general idea of concentrator photovoltaic is to use optics to focus sunlight onto a small receiving solar cell. In this way, the cell area in the focus of the concentrator can be reduced by the concentration ratio (C > 300) for high concentration photovoltaic systems). Consequently, this reduction allows the utilization of expensive but

highly efficient multi-junction solar cells in an economical manner. As a matter of fact, the efficiency of multi-junction solar cells is reported to be higher than 40% [2-4]. On the CPV module level, photovoltaic efficiency above 35% have been reported [5-7].

Among high concentration photovoltaic (HCPV) modules/systems, Fresnel lens recently have been one of the best choices because of its advantages such as small volume, light-weight, mass production with low cost as well as effectively increasing the energy density. Xie et al. [8] gives a review on concentrated solar energy applications using Fresnel lenses in the last two decades, the highest photovoltaic conversion efficiency based on imaging Fresnel lens and non-imaging Fresnel lens is reported as over 30% and $31.5 \pm 1.7\%$, respectively. Amongst the existed

^{*} Corresponding author. Tel.: +86 551 63601641; fax: +86 551 63606459. E-mail address: jijie@ustc.edu.cn (J. Ji).

		X	parameter
vmbols			•
Ĭ	area, m ²	Subscripts	
2	geometric concentration ratio	а	ambient
p	specific heat, J/(kg K)	conv	convective
j	tube diameter, m	d	direct
ONI	direct normal irradiation, W/m ²	e	electrical
g	bandgap energy, eV	exp	experimental
Ĵ	irradiance, W/m ²	f	film
ı	heat transfer coefficient, W/(m ² K)	Fresnel	Fresnel lens
	current, A	i	inlet
0	dark current, A	1	loss
k	Boltzmann constant, 1.38×10^{-23} J/K, thermal conduc-	m	module
	tivity, W/(m K)	max	maximum power point
ζ_0	temperature coefficient of short circuit current, A/K	0	outlet
'n	mass flow rate, kg/s	ОС	open circuit
1	diode ideality factor	opt	optical
N	number of solar cells in a module, number of the finite-	ph	photocurrent
	difference equations	prism	optical prism
Vи	Nusselt number	ref	reference
ס	power, W	rad	radiative
Pr	Prandtl number	SC	short circuit
7	electron charge, 1.6×10^{-19} C, heat energy, W	sim	simulated
Q	energy, W	sky	sky
\overline{q}''	heat flux, W/m ²	th	thermal
R _s	series resistance, Ω	w	water
R_{sh}	shunt resistance, Ω		
Re	Reynolds number	Greek symbols	
_	temperature, °C	E E	emissivity
ı	wind speed, m/s	η	efficiency
,	viscosity, m ² /s	σ	Stefan–Boltzmann constant, $5.67 \times 10^{-8} \text{ W/m}^2 \text{ K}^4$
/	voltage, V	U	Stelan Bottemann constant, 5.07 × 10 W/III K

point-focus Fresnel CPV systems, almost all the modules are passively cooled. One point of view [9] believes that passive cooling could work well for single-cell geometries with flux level as high as $1000\times$ suns, because there is large area available for heat sinking. However, the fact is that a large part of the already collected solar energy is dissipated as heat to the environment. By contrast, an active thermal loop can easily enable heat transfer from the receiver to a thermal load. The heat can be further used as either cooling power or domestic water by solar cooling and air conditioning [10–12] or solar desalination [13–16] technologies. Therefore, a hybrid PV/T system with point-focus Fresnel lens can definitely improve the utilization of solar energy.

A kind of HCPV/T module equipped with point-focus Fresnel lens was proposed in our previous work [17]. The outdoor experimental results show that the module could obtain an instantaneous electrical efficiency of 28% and an instantaneous thermal efficiency of 55% simultaneously. Changes of electrical and thermal efficiencies of the module caused by solar irradiation and water temperature have been discussed based on experimental data. but more characteristics of the module are difficult to be obtained only by outdoor experiments. Hence, these issues, such as irradiation and temperature dependence on module performance, should be investigated on model level. Besides, a validated model is beneficial to either module optimization or performance prediction. Over the years, several researchers have studied the characteristics of non-concentrating hybrid PV/T collectors by mathematical methods [18-23]. Nevertheless, literatures on the performance modeling of CPV/T modules/systems are fragmented, especially in the cases of HCPV/T systems. Kribus et al. [24] presented an evaluation on a miniature dish CPV/T system whose concentration ratio is $500\times$. The heat transport system, the electrical and thermal performance, the manufacturing cost and the resulting cost of energy have been analyzed. Rosell et al. [25] set up a model to simulate the thermal behavior of a low concentrator PV/T system which is the coupling of a linear Fresnel concentrator (C = 30) with a channel photovoltaic/thermal collector. Reisl et al. [26] developed a theoretical model to describe the response of trough systems in terms of module temperature, power output and energy yield. However, models established in these studies are mostly either oversimplified or by empirical equations.

In this paper, both electrical and thermal models of the HCPV/T module (C = 1090) are developed by numerical methods. The module is firstly proposed by our team and it is an integration of CPV system with point-focus Fresnel lens and thermal collector. The electrical model is rooted on the Shockley diode equation which is widely used [27-29], and the thermal simulation is conducted by adopting a two-dimensional steady-state heat transfer model. The models are applied to evaluate, analyze as well as predict the module performance. The electrical model focuses on dependence of module's electrical performance on cell operating temperature and irradiance. The thermal model is employed to investigate the proportion of heat collected and dissipated. It also can be used to determine the thermal profile on the receiver, which is scarcely possible to be acquired by one-dimensional heat transfer analysis. The simulated results are compared with experimental results subsequently. Furthermore, influence of independent parameter including DNI, water temperature, mass flow rate, ambient temperature and wind speed on module performance are discussed by virtue of the validated models.

Download English Version:

https://daneshyari.com/en/article/6683755

Download Persian Version:

https://daneshyari.com/article/6683755

<u>Daneshyari.com</u>