

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Retrofit of heat exchanger networks with heat transfer enhancement based on an area ratio approach

Mary O. Akpomiemie*, Robin Smith

Centre for Process Integration, School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK

HIGHLIGHTS

- Cost-effective retrofit based on area ratio approach is proposed.
- Energy performance is improved by the use of heat transfer enhancement.
- Fixed network topology and no need for additional heat transfer area in retrofit.
- Analysis is dependent on heat exchanger geometry.

ARTICLE INFO

Article history: Received 17 June 2015 Received in revised form 23 October 2015 Accepted 29 November 2015

Keywords:
Heat exchanger network
Retrofit
Heat transfer enhancement
Optimisation
Area ratio
Sensitivity analysis

ABSTRACT

The goal for performing heat exchanger network (HEN) retrofit is not only to reduce utility consumption but to ensure that the retrofit is economically viable. The problem of using heat transfer enhancement for retrofit lies with the uncertainty of the best location in which to apply enhancement, the augmentation level and dealing with downstream effects after enhancement is conducted.

To solve these problems, a systematic methodology is proposed. The first step in this methodology is the identification of candidate heat exchangers. In the second step, two methods, sensitivity analysis and an area ratio approach are compared for the identification of the best candidate heat exchangers to enhance. Heat transfer enhancement is then performed on the best candidate heat exchanger and, a non-linear optimisation based model is used to deal with the downstream effects after enhancement, subject to meeting set constraints on the HEN, such as the stream target temperatures and heat transfer area. Following this approach, the problems posed by the use of enhancement for retrofit can be addressed in a simple and computationally inexpensive manner.

Heat transfer enhancement is an attractive option for HEN retrofit as it can provide energy saving without the need for topology modifications and additional heat transfer area with an added benefit of reduced implementation time, as modifications can be carried out during normal shutdown periods.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The desire to improve the energy efficiency in process industries has resulted in a rise of interest into the retrofit of heat exchanger networks (HENs). This is based on the heat integration strategies proposed to recover and utilise more of the heat available in the processes and reduce dependence on external utilities in satisfying process heating and cooling demands. The success or failure of these heat integration strategies depends on the design of HENs. The retrofit of heat exchanger networks (HENs) is commonly centred on the use of pinch analysis, mathematical programming or a combination of both methods (hybrid methods).

The pinch analysis method was first proposed by Tjoe and Linnhoff [1]. This work provided retrofit targets (for additional heat transfer area and utility consumption), network analysis tools, and a modification strategy for energy saving retrofits. The drawback associated with this work was that the area targets obtained did not reflect a complete area distribution within the HEN. Polley and Panjeshahi [2] extended this work to take into account pressure drop constraints. Shokoya and Kotjabasakis [3] proposed a new technique that tackled the limitations of the pinch design method. The technique proposed takes into account the area distribution of the existing HEN into the retrofit target. This method provides a more realistic area target than that proposed by Tjoe and Linnoff [1] due to the consideration of area distribution. Carlsson et al. [4] introduced the cost matrix method for HEN retrofit. They considered the cost of heat transfer area, physical piping distance

^{*} Corresponding author.

E-mail address: mary.akpomiemie@manchester.ac.uk (M.O. Akpomiemie).

Nomenclature Q heat duty, kW THIS hot inlet temperature of stream, °C U overall heat transfer coefficient, kW m⁻² °C⁻¹ **THOS** hot outlet temperature of stream, °C heat transfer area, m² Α **TCIS** cold inlet temperature of stream, °C $\Delta T_{\rm LM}$ log mean temperature difference, °C **TCOS** cold outlet temperature of stream, °C correction factor. -RP retrofit profit. \$ F_T existing heat transfer area, m² RC retrofit cost, \$ Aexisting heat duty of utility heat exchangers, kW UC Qutility utility cost, \$ shell-side heat transfer coefficient, kW $\mbox{m}^{-2}\,{}^{\circ}\mbox{C}^{-1}$ EC h_S enhancement cost, \$ shell-side fouling resistance, kW m⁻² °C⁻¹ area cost, \$ AC h_{SF} D_o tube outer diameter, m BC bypass cost, \$ D_i tube inner diameter, m CCU cost parameter for cold utility, \$/y tube thermal conductivity, kW $\mbox{m}^{-1}\ \mbox{\tiny o}\mbox{C}^{-1}$ CHU $k_{\rm tube}$ cost parameter for hot utility, \$/y tube-side fouling resistance, kW $\text{m}^{-2}\ ^{\circ}\text{C}^{-1}$ OT operating time, y h_{TF} tube-side heat transfer coefficient, kW $m^{-2} \circ C^{-1}$ EF enhancement factor, h_T A_R area ratio, twist ratio, -Greek letters Ή twist pitch, m viscosity. Pa s μ fluid velocity, m s⁻¹ и fluid density, kg m⁻³ ρ p axial roughness pitch, m δ tape thickness, m е wire diameter, m physical correction factor, heat capacity, $J \text{ kg}^{-1} \circ C^{-1}$ C_P fluid thermal conductivity, kW m⁻¹ °C⁻¹ k Dimensionless groups mass flowrate, kg s⁻¹ m Nusselt number = $\frac{hD_i}{k}$ Nu $T_{\rm in}$ inlet temperature, °C Prandtl number = $\frac{C_p \mu}{\nu}$ Pr outlet temperature, °C T_{out} Reynolds number = $\frac{\rho u D_i}{\mu}$ Swirl number = $\frac{Re}{\sqrt{y}} \frac{\pi}{\pi - 4(\delta/D_i)} \left[1 + \left(\frac{\pi}{2y} \right)^2 \right]^{\frac{1}{2}}$ N_P number of tube passes, -Re N_T number of tubes, -Sw N_S number of shells, p_T tube pitch, m effective tube length, m Subscripts $L_{\rm eff}$ R base D_{ς} shell inside diameter, m Е enhanced В baffle spacing, m T tube n_b number of baffles, shell inlet baffle spacing, m $B_{\rm in}$ UWT B_{out} uniform wall temperature outlet baffle spacing, m baffle cut. % bulk B_C wall $D_{\text{TN.inlet}}$ inner diameter of the inlet nozzle for the shell-side fluid, ex exchanger $D_{TN,outlet}$ inner diameter of the outlet nozzle for the shell-side HS hot stream CS cold stream fluid, m CU cold utility TT target temperature, °C HU supply temperature, °C hot utility TS initial THI hot inlet temperature, °C hot outlet temperature, °C final THO E. 0 TCI cold inlet temperature, °C enhanced and optimised TCO cold outlet temperature, °C

between pair of streams, auxiliary equipment and, pumping cost. The pinch analysis method although promoting good user interaction, can be very time consuming due to its heuristic nature. The heuristic nature of the decision process could make it difficult to apply pinch analysis to larger problems due to the increased number of design alternatives.

Mathematical programming methods can be further subdivided into deterministic and probabilistic (stochastic) optimisation methods. In both cases, the retrofit problem is converted into an optimisation task by formulating the problem as a mathematical model. Ciric and Floudas [5] proposed a systematic two-stage approach for retrofit of HENs. In the first stage, a minimum temperature approach for the HEN is selected and calculations for the minimum utility cost are made. All possible pairings of streams and heat exchangers are then considered, so that all possible struc-

tural modifications are included in the mixed integer linear programming (MILP) model. This model is then solved to obtain the minimum modification cost. The second stage consists of producing a superstructure containing all the alternative network structures and then solving this superstructure as a non-linear programming (NLP) problem. The solution of this superstructure is the retrofitted network with the minimum cost of investment. A major limitation of this methodology is the large and complex superstructure in the mathematical formulation. The complexity of the superstructure could make the application of the methodology to large systems prohibitive, as very long computational times (and cost) could be required to obtain a feasible solution. To relieve this problem, they then went on to present a single stage mixed integer non-linear programming (MINLP) model [6] that simultaneously optimised the HEN retrofit. To better account for

Download English Version:

https://daneshyari.com/en/article/6683904

Download Persian Version:

https://daneshyari.com/article/6683904

Daneshyari.com