ELSEVIER Contents lists available at ScienceDirect # **Applied Energy** journal homepage: www.elsevier.com/locate/apenergy # Multi-objective three stage design optimization for island microgrids Julia Sachs\*, Oliver Sawodny Institute for System Dynamics, University of Stuttgart, Pfaffenwaldring 9, 70550 Stuttgart, Germany #### HIGHLIGHTS - An enhanced multi-objective three stage design optimization for microgrids is given. - Use of an optimal control problem for the calculation of the optimal operation. - The inclusion of a detailed battery model with CC/CV charging control. - The determination of a representative profile with optimized number of days. - The proposed method finds its direct application in a design tool for microgids. #### ARTICLE INFO # Article history: Received 30 September 2015 Received in revised form 14 December 2015 Accepted 15 December 2015 Keywords: Multi-objective optimization Energy system Optimal sizing Optimal control #### ABSTRACT Hybrid off-grid energy systems enable a cost efficient and reliable energy supply to rural areas around the world. The main potential for a low cost operation and uninterrupted power supply lies in the optimal sizing and operation of such microgrids. In particular, sudden variations in load demand or in the power supply from renewables underline the need for an optimally sized system. This paper presents an efficient multi-objective model based optimization approach for the optimal sizing of all components and the determination of the best power electronic layout. The presented method is divided into three optimization problems to minimize economic and environmental objectives. This design optimization includes detailed components models and an optimized energy dispatch strategy which enables the optimal design of the energy system with respect to an adequate control for the specific configuration. To significantly reduce the computation time without loss of accuracy, the presented method contains the determination of a representative load profile using a k-means clustering method. The k-means algorithm itself is embedded in an optimization problem for the calculation of the optimal number of clusters. The benefits in term of reduced computation time, inclusion of optimal energy dispatch and optimization of power electronic architecture, of the presented optimization method are illustrated using a case study. ## 1. Introduction The increase of fuel prices and the worldwide rise of energy demand up to 53% by 2035 [1] poses additional demands for sustainable energy generation. In particular, microgrids comprising of diesel generators, storage devices and renewable sources present an effective approach for an economic energy supply to rural areas. They operate autonomously, either in parallel with an existing utility grid, or as a stand-alone island grid, dependent on their field of application [2]. An overview of different research projects concerning microgrids, the challenges, and developments is given in [3]. The integration of renewable resources into these energy systems is of high importance to achieve a low cost operation *E-mail addresses*: julia-anna.sachs@isys.uni-stuttgart.de (J. Sachs), oliver.sawodny@isys.uni-stuttgart.de (O. Sawodny). although it places additional requirements on the power management of the microgrid. The discontinuity in the generation of renewables and sudden variations in their power output emphasize the need for an enhanced control and optimal system design. The steady increase in the usage of stand-alone hybrid energy systems consequently puts the focus on their layout optimization and dimensioning of components. Related work focusing on microgrids can be found in [4] for the optimal design using particle swan optimization (PSO) methods and a decentralized agent based control for the operation of the microgrid. In [5], an agent based demand response control method for a simultaneous sizing of the microgrid components is presented. The type of microgrid considered in this paper presents an island energy system including diesel generators, photovoltaics (PV), power electronics (PoE), and a battery module. The focus of the optimal design lies on economic as well as environmental aspects while aiming for an uninterrupted power <sup>\*</sup> Corresponding author. #### Nomenclature Variables & functions Indices capacity [Ah] index for energy storage system $(\cdot)_{b}$ $C(\cdot)$ cost function [\$/kWh] all variables of the capital cost $(\cdot)_{\mathsf{cap}}$ $\delta_{\mathrm{off}}$ diesel generator off time $(\cdot)_{\text{cl}}$ index for battery cell diesel generator on/off state $(\cdot)_{\text{Cell}}$ $\delta_{\mathrm{state}}$ start up/shutdown of diesel generator $(\cdot)_{\text{dg}}$ index for diesel generator $\delta_{u/d}$ state transition cost electric δJ $(\cdot)_{\mathsf{el}}$ efficiency [%] index for fuel consumption η $(\cdot)_{\text{fuel}}$ function including one objective index for diesel generators $(\cdot)_{i}$ F objective function of multi-objective optimization index of time $(\cdot)_{\mathbf{k}}$ $f_{\mathrm{d}}^{t}$ index for load demand discount factor $(\cdot)_{load}$ all irradiations on the solar penal [W/m<sup>2</sup>] index for maximal value $(\cdot)_{\text{max}}$ Ι current [A] $(\cdot)_{\text{min}}$ index for minimal value objective function $(\cdot)_{\text{mod}}$ index for photovoltaic module N number all variables of the O&M cost $(\cdot)_{0\&M}$ $N_{\rm days}$ index for power electronics number of days in representative profile $(\cdot)_{\mathsf{pe}}$ P output power [kW] index for photovoltaic $(\cdot)_{\mathsf{pv}}$ $P_{gen}$ generated energy over system lifetime $(\cdot)_{\text{real}}$ subscript for real values spinning reserve [W] index for reference trajectories form first level $P_{\rm sp}$ $(\cdot)_{ref}$ heat transfer [kg m<sup>2</sup>/s<sup>3</sup>] all variables of the replacement cost $(\cdot)_{\text{rep}}$ $\dot{Q}_{rad}$ the radiation heat transfer to and from the panel all variables of the salvage cost $(\cdot)_{\text{sal}}$ $[kg m^2/s^3]$ . Qconv the convection heat transfer to and from the panel **Abbreviations** $[kg m^2/s^3]$ CAPEX capital expenditure R resistance $[\Omega]$ CC/CV constant current/constant voltage T temperature [K] CID cluster dispersion indicator $T_{STC}$ temperature of standard test conditions [K] DDP discrete dynamic programming input vector of optimization 11 GA genetic algorithm voltage [V] **LCOE** levelized cost of energy $V_{\rm diode}$ voltage across the diode [V] MIA mean index adequacy open circuit voltage [V] $V_{\rm OC}$ MINLP mixed integer nonlinear problem $V_{\rm t}$ the terminal voltage [V] MPC model predictive control x optimization variable NOMAD Nonlinear Mesh Adaptive Direct Search Method state vector of variables of optimal control problem $\mathbf{x}_{\mathsf{C}}$ O&M operation and maintenance state vector of variables of design optimization problem $\mathbf{x}_{L}$ PV photovoltaic Z cluster center power electronics PoE number of profiles in cluster SOC state of charge supply. Such systems can for example be found in remote areas to power small villages. The diesel generator usually acts as a primary or backup power supply and is defined by a high operation cost mainly resulting from the fuel consumption. The integration of a storage system, here a lead acid battery, renders more flexibility by storing additional energy and providing it when it is needed. Its main task is to balance the load demand and power generation in the microgrid [6]. An investigation of different storage system technologies and benefits of their inclusion into microgrids are discussed in [7]. Photovoltaics are particularly attractive for remote communities since they offer a clean source of power in locations that cannot be economically served by means of grid extension. PV integration reduces the system cost but poses additional challenges on the system due to the intermittency and unpredictability of renewables. The design, control and optimization of these hybrid systems are usually very complex tasks. Recently considerable notice is being given to the improvement of microgrid layouts and component sizing with the use of advanced algorithms. A common approach is the use of meta-heuristic and heuristic optimization approaches as the PSO. The approach presented in [8] considers the multi-objective design optimization of an energy system with underlying rule based operation strategy applying PSO in combination with an $\epsilon$ -method. In [9], a stand alone photovoltaic-wind-bat tery system is modeled as mixed integer problem and optimized using PSO. A comparison of PSO, a genetic algorithm (GA), and the planning tool Homer for the optimization of an energy system, which include a cycle charging strategy for the calculation of the energy dispatch, is presented in [10]. The work in [11] focuses on a modified PSO algorithm for the optimization of off-grid as well as grid connected systems to improve the convergence speed. Further methods are the ant colony in combination with the artificial bee algorithm [12], neural network and adaptive neuron fuzzy interference [13], a hybrid simulated annealing-tabu search method [14] or GA. In [15], a GA is used for the optimal design of the storage system by the use of fuzzy expert methods for the energy management. The multi-objective optimization problem in [16] is solved using the NSGA-II [17], which will also be used in this paper. The models included in the problem formulation in [16] are given on a power and efficiency based level where the system is operated using a rule based dispatch strategy. The use of GA for the optimization of autonomous energy systems, including three different rule based optimization modes, can be found in [18]. A GA also finds its application for the multi-objective ### Download English Version: # https://daneshyari.com/en/article/6684079 Download Persian Version: https://daneshyari.com/article/6684079 Daneshyari.com