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h i g h l i g h t s

� Developed and verified a novel general methodology for building energy forecasting.
� Quantitatively evaluated energy system nonlinearity and system response time.
� Developed and adapted system identification model for building energy forecasting.
� Compared the proposed system identification model against four inverse models.
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a b s t r a c t

Optimal automatic operation of buildings and their subsystems in responding to signals from a smart grid
is essential to reduce energy demand, and to improve the power resilience. In order to achieve such auto-
matic operation, high fidelity and computationally efficiency whole building energy forecasting models
are needed. Currently, data-driven (black box) models and hybrid (grey box) models are commonly used
in model based building control. However, typical black box models often require long training period
and are bounded to building operation conditions during the training period. On the other hand, creating
a grey box model often requires (a) long calculation time due to parameter optimization process; and (b)
expert knowledge during the model development process. This paper attempts to quantitatively evaluate
the impacts of two significant system characteristics: system nonlinearity and response time, on the
accuracy of the model developed by a system identification process. A general methodology for building
energy forecasting model development is then developed. How to adapt the system identification process
based on these two characteristics is also studied. A set of comparison criteria are then proposed to eval-
uate the energy forecasting models generated from the adapted system identification process against
other methods reported in the literature, including Resistance and Capacitance method, Support Vector
Regression method, Artificial Neural Networks method, and N4SID subspace algorithm. Two commercial
buildings: a small and a medium commercial building, with varying chiller nonlinearity, are simulated
using EnergyPlus in lieu of real buildings for model development and evaluation. The results from this
study show that the adapted system identification process is capable of significantly improve the
performance of the energy forecasting model, which is more accurate and more extendable under both
of the noise-free and noisy conditions than those models generated by other methods.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Buildings are responsible for over 40% of the primary energy
and 70% of the electricity consumption in the U.S. [1] More than
25% of the U.S. electricity demand could be dispatchable if build-

ings can respond to the dispatch through advance operation strate-
gies and smart grid infrastructure [2]. Recently, model based
predictive control (MPC) has been proven to be a promising solu-
tion for this active operation [3]. As the basis of MPC, high fidelity
and computationally efficient building energy forecasting models
are indispensable. How to develop an accurate, robust, and cost-
effective building energy forecasting model is an urgent problem
and therefore the objective of this study. The goals of this paper
are twofold. One is to propose a system identification methodology
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that is able to adapt based on a building’s characteristics, to gener-
ate a whole building cooling energy forecasting model. The other
one is to compare the performance of the proposed methodology
with other modeling methods reported in the literature.

Although there are a large number of studies regarding building
energy forecasting using different methods, they all can be catego-
rized as white box, black box and the grey box models. All these
three types of models have their own limitations in application
to real field building control. For example, black box models, such
as autoregressive exogenous (ARX), Artificial Neural Networks
(ANN), Support Vector Machine for Regression (SVR), and N4SID
state space model have been applied in building energy forecasting
and control studies [4–11]. These data-driven models, however,
often require long training period and the model extensibility is
limited to the training data. In this study, model extensibility is
defined as the forecasting accuracy of a model, when it is subject
to weather and operation conditions that are different from those
during the model training period. This is an important model prop-
erty because building systems are often nonlinear systems. A
model that is trained using one range of operating/weather condi-
tions often is not usable for a different operating/weather condi-
tion. Grey box models, such as Resistance and Capacitance (RC)
network and lumped parameters models, are popular models in
building control and operation studies [3]. They are widely used
in MPC for buildings such as those to estimate the cooling energy
consumption [12–14], to utilize the building passive thermal mass
storage [15–17], or to utilize active thermal storage devices [18,19]
and the energy generation systems [20,21] to reduce energy con-
sumption or energy cost. Even though different advance parameter
determination methods have been implemented to identify the
parameters of the grey box models [12,13], the parameter determi-
nation process is often computational demanding. In [14], the
authors developed a method for parameters and variable selection
using Singular value decomposition and solving the RC equation in
frequency domain. Developing the structure of a gray box model,
however, often requires expert knowledge, and the parameter
determination process is also time consuming. Therefore, when
applying these modeling approaches in the real field, each of these
approaches has its own barriers such as training data availability/
quality, implementation time, and implementation cost (when
expert knowledge is required).

In order to solve technique gaps from these methods, some
studies started to combine different methods to improve the model
performance. Lee and Tong [22] presented a hybrid grey model
with genetic programming for energy consumption forecasting.
Fux et al. [23] combined RC model with Kalman filter to improve
the model accuracy and robustness. Lü et al. [24] developed a com-
bined RC and autoregressive-integrated-moving-average (ARIMA)
model for heterogeneous building energy forecasting. These meth-
ods tried to reduce the efforts in the grey-box modeling, but the
inherited limitations from the grey box models are still there. It
is also difficult to develop a general model structure for different
buildings, and it requires high engineering effort in implementing
it into real model predictive controllers. On the other hand, data
driven models have also been combined with Kalman filter
[25,26] to improve the data driven model performance by bringing
in the real measurements. Similarly, the inherited drawbacks of
data driven models still cannot be solved there.

As results, a novel generalmethodology for building energy fore-
castingmodel development has been proposed and validated in this
study to solve the limitations of the existing methods. Different
from the above described modeling approaches, which collects sys-
tem data in a passive manner, system identification (SID) is a pro-
cess of developing or improving a mathematical representation of
a physical system using data that is collected from a designed
operation or experiment, in an active manner. Although system

identification techniques have been widely used in other engineer-
ing applications, there are only limited applications in the building
energymodeling field. In an earlier study by the authors [27], a sys-
tem identificationmethodology, using frequency response function
with an active system excitation, is proposed and tested for build-
ing energy forecasting. The method is demonstrated to be able to
develop accurate and computationally efficient energy forecasting
model for a small commercial building. However, when the pro-
posed SID process is applied to develop an energy forecastingmodel
for a medium commercial building, the model accuracy is not satis-
factory. It is suspected that a building system’s nonlinearity and
response time affect the SID model’s accuracy since frequency
response function method is better used for more linear systems
[28]. Therefore, this study focuses on investigating such impacts
and how to adapt the SID process systematically based on a
system’s nonlinearity and response time. The goal is to develop a
systematic SID methodology which can be scaled for buildings with
varying nonlinearity and response time.

This study firstly proposes a method to quantitatively
determine a system’s nonlinearity and response time, and their
impacts on the SID model development. Based on such character-
istics (nonlinearity and response time), a methodology is then
developed to adapt the SID modeling process. A comparison study
is also conducted to evaluate the performance of the adapted SID
model, developed based on a building’s nonlinearity and response
time, against literature-reported RC model, SVR model, ANN model
and N4SID model. Four criteria, namely, energy forecasting accu-
racy, calculation speed, extendibility and uncertainty are used for
the model performance comparison. Again, forecasting extendibil-
ity concerns the model forecasting accuracy when the weather
and/or operating conditions are different from those during the
training period. Forecasting uncertainty concerns the model fore-
casting performance when training and forecasting data contains
noise. Two commercial building, a small and a medium commer-
cial building, with varying chiller nonlinearity, are simulated using
EnergyPlus in lieu of real buildings for model development and
comparison. In the following sections, the methodology for system
characteristics test and SID model development is introduced
firstly in Section 2, the EnergyPlus modeling and data generation
process are discussed in Section 3, the system characteristic test
results and SID model adaptation results are summarized in Sec-
tions 4 and 5, and then the comparison study is presented in
Section 6.

2. Methodology

In this section, the test method used to determine a system’s
nonlinearity and response time is first introduced. How to adapt
the SID model development based on the nonlinearity and
response time are then discussed.

2.1. Building energy system characteristics test method

2.1.1. System nonlinearity test
It is believed that a system’s nonlinearity is one of the most

important characteristics for a system’s model development, espe-
cially for nonparametric methods [29]. In this study, a magnitude
squared coherence based method for system nonlinearity test
[29] is adopted. This method is based on the cross-spectral density
of the inputs and outputs:

Cxy ¼
Sxy
�� ��2
SxxSyy

ð1Þ

where the magnitude squared coherence (Cxy) estimate the power
transfer between input and output to estimate the causality
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