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h i g h l i g h t s

� This study evaluates an occupant-feedback driven Model Predictive Controller (MPC).
� The MPC adjusts indoor temperature based on a dynamic thermal sensation (DTS) model.
� A chamber model for predicting chamber air temperature is developed and validated.
� Experiments show that MPC using DTS performs better than using Predicted Mean Vote.
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a b s t r a c t

In current centralized building climate control, occupants do not have much opportunity to intervene the
automated control system. This study explores the benefit of using thermal comfort feedback from
occupants in the model predictive control (MPC) design based on a novel dynamic thermal sensation
(DTS) model. This DTS model based MPC was evaluated in chamber experiments. A hierarchical structure
for thermal control was adopted in the chamber experiments. At the high level, an MPC controller
calculates the optimal supply air temperature of the chamber heating, ventilation, and air conditioning
(HVAC) system, using the feedback of occupants’ votes on thermal sensation. At the low level, the actual
supply air temperature is controlled by the chiller/heater using a PI control to achieve the optimal set
point. This DTS-based MPC was also compared to an MPC designed based on the Predicted Mean Vote
(PMV) model for thermal sensation. The experiment results demonstrated that the DTS-based MPC using
occupant feedback allows significant energy saving while maintaining occupant thermal comfort
compared to the PMV-based MPC.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) has shown its potential to
reduce building energy consumption while maintain thermal com-
fort in both simulations [1–8] and experiments in laboratories,
class rooms or even entire buildings [9–15]. Furthermore, MPC
plays an important role for the renovation of old buildings and
design of new low-energy buildings. Renewable energy such as
solar, wind, and geothermal energy has been used more frequently
nowadays in buildings due to their much lower impact on environ-
ment. However, most of the renewable energy could not serve as a
stable energy resource alone and usually requires an energy

storage system associated with them in order to supplement the
electric power. In such applications, MPC has demonstrated a
strong capability to utilize power storage in shifting the peak-
load and in saving energy [13,16–19].

In addition to energy savings, occupants’ indoor thermal com-
fort is just as important in the design of building thermal control.
In many MPC formulations in the existing literature, thermal com-
fort was often represented simply by air temperature, where occu-
pants were assumed to be comfortable as long as the room
temperature was within a certain range [3,5,9,13,20]. However, it
is known that thermal comfort also depends on many other factors
such as relative humidity (RH), mean radiant temperature (MRT),
air velocity, occupants’ clothing insulation level, and their activity
level, based on Fanger’s Predicted Mean Vote (PMV) model [10,21].
Though the existing heating, ventilation, and air conditioning
(HVAC) control algorithms seldom directly optimize a PMV index
(or use it in a constraint), a numerical study demonstrated that
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using PMV in defining the thermal comfort constraint in an MPC
could reduce energy consumption and improve thermal comfort,
compared to utilizing a comfort zone from a psychrometric chart
[4]. Nevertheless, direct incorporation of the PMV in an MPC design
for HVAC systems could also raise several challenges. One concern
relates to the additional computational burden due to the iterative
computation of PMV. Past work tried to approximate the PMV with
a neural network model [11,22,23] or with a linearized parameter-
ization model [24]. A second concern relates to the additional cost
of sensing, noting that most buildings typically do not have sensors
to continually measure humidity, air velocity and MRT needed to
compute the PMV. Even though for laboratory facilities where
the aforementioned environmental sensing data are available,
occupant clothing insulation and activity levels, which could vary
with respect to time and vary among occupants, are seldom mon-
itored continually and individually. Assuming a uniform and con-
stant clothing level for occupants could cause errors in predicting
occupant thermal sensations [10]. Furthermore, field studies often
showed that there could be a discrepancy between Fanger’s PMV
and occupants’ actual mean vote (AMV) [25]. Finally, occupants’
awareness of opportunities to control their environment could
affect their perceptions of thermal comfort [26], and occupants
did often express their wishes to intervene automated control sys-
tems [27]. Though under the current building environment it
might not be practical for an individual occupant to directly control
HVAC systems to achieve a personalized thermal environment, it is
reasonable to assume that there is a feedback channel for occu-
pants to communicate their thermal sensation perceptions to the
controller. There has been work on taking into account occupancy
schedules and patterns in energy optimization [28]. However, this
study, to the best of our knowledge, is the first one to conduct
experimental evaluation of HVAC control that uses feedback of
occupants’ votes on thermal comfort.

Instead of PMV, this study considered a data-driven state-space
dynamic thermal sensation model (DTS) developed in the authors’
prior paper [29]. The DTS model contains a time-varying offset
parameter that adaptively changes its value with respect to pertur-
bations in environmental and occupant-associated thermal condi-
tions using an extended Kalman filter (EKF) with the feedback of
occupants’ thermal sensation votes. A numerical study was then
conducted by the authors in a subsequent paper [30], which indi-
cated that the MPC based on the DTS model (MPC-DTS) could
potentially produce better thermal comfort and energy outcomes
than the MPC based on the PMV (MPC-PMV). Additionally, both
MPCs had better thermal comfort and energy savings than a pro-
portional integral (PI) controller. In this study, we conducted
chamber experiments to evaluate and compare the performance
of the MPC-DTS and MPC-PMV. The experimental study not only
evaluated the feasibility of implementing an occupant-feedback
based MPC but also revealed underlying causes that allow the
MPC-DTS to achieve a better energy saving and thermal comfort
than the MPC-PMV.1

This paper is organized as follows. Section 2 introduces the cli-
mate chamber setup and describes the identification and valida-
tion of a chamber model. Section 3 provides an overview of the
DTS model. Section 4 presents the MPC formulation, where both
MPC-DTS and MPC-PMV are described. Chamber experiment
design is presented in Section 5. Experiment results and analysis
are given in Section 6, and conclusions are drawn in the end.

2. Chamber setup and chamber model

2.1. Chamber setup

The experiments of this study were conducted in the environ-
mental chamber located in Engineering Unit A building at the
University Park campus of the Pennsylvania State University. The
chamber has its own HVAC system and is able to simulate different
indoor conditions. A schematic drawing of the chamber with its
basic dimensions is shown in Fig. 1. Thermal couples, with mea-
surement error within 0.5 �C, are installed in both supply and
return ducts of the HVAC system. A BlackGlobe temperature sensor
is placed in the middle of the chamber to measure the MRT. The
thermistor interchangeability error of the BlackGlobe is less than
±0.2 �C from 0 �C to 70 �C. The measured MRT is collected by a
HOBO U12 data logger. This particular model of data logger
also includes temperature and humidity sensors. The error for
measuring air temperature is less than ±0.35 �C from 0 �C to
50 �C and the error for relative humidity reading is less than
±2.5% from 10% to 90%. Four omnidirectional anemometers are
placed to monitor the air velocity. The chamber is set up to mimic
a typical office environment and the maximum allowed number of
occupants is 4.

Fig. 2 shows a schematic plot of the chamber HVAC system. The
HVAC system uses an electric resistance heater for heating
and chilled glycol/water mixture for cooling. The chamber’s
sophisticated measuring and data acquisition system (DAS), along
with a dedicated programmable logic controller (PLC), allow to test
different HVAC control algorithms.

2.2. Chamber model identification

This study started with developing a heat balance model on the
zone air under the EnergyPlus [31] simulation environment. How-
ever, the resulting predictions on chamber air temperature from
such a heat balance model do not agree with measurements. Hence
a data-driven regression model was estimated in the following,
based on the collected input and output data with input variables
being selected based on the energy balance.

In the experiments (for both chamber modeling and control
evaluation), the supply air flow rate was kept at 325 m3/h (with
±5% variation) and the supply air temperature was controlled by
the Allen Bradley PLC control system using a PI control. The air
velocity is around 0.1 m/s. Dampers for the outdoor air, exhaust,
and recirculation in ducts were set at a constant position so that
10% of fresh outdoor air was mixed with 90% return air. The
sources of internal gain consist of a shop light, participants and
their laptops or Ipads (one by each participant). The supply air
temperature is chosen as the only control input in the chamber
model. Other inputs to this model, including air temperature out-
side the chamber and internal gains, are considered to be known
and measurable inputs. The output of the chamber model is the
predicted chamber temperature.

Fig. 3(a) shows the time histories of supply air temperature,
temperature outside the chamber, occupancy schedule and the
resulting chamber temperature, which are used as the training
data for model identification. The supply air temperature initially
started at 23.7 �C, then stepped down to 13 �C for �10 h, raised
up to 28 �C for another 10 h, and finally went down to 24 �C for
the rest of the time. Since the chamber is located inside an office/
classroom building, the temperature outside the chamber varied
only slightly within a small range between 22 �C and 24 �C. One
person with a laptop entered the chamber at t = 36 h and stayed
for 6 h till t = 42 h, which caused the chamber temperature to
increase from 24.7 �C to 25.3 �C.

1 Due to the limitation of the chamber experiments for not being able to run three
controllers (two MPCs and one PI) in the same day for a fair comparison, PI control
was not evaluated in the chamber study reported in this paper. However, a pilot study
comparing a PI to MPCs across different days was conducted and results can be
requested by contacting the authors.
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