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h i g h l i g h t s

� Three different model-based filtering algorithms for SOC estimation are compared.
� A combined dynamic loading profile is proposed to evaluate the three algorithms.
� Robustness against uncertainty of initial states of SOC estimators are investigated.
� Battery capacity degradation is considered in SOC estimation.
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a b s t r a c t

Accurate state-of-charge (SOC) estimation is critical for the safety and reliability of battery management
systems in electric vehicles. Because SOC cannot be directly measured and SOC estimation is affected by
many factors, such as ambient temperature, battery aging, and current rate, a robust SOC estimation
approach is necessary to be developed so as to deal with time-varying and nonlinear battery systems.
In this paper, three popular model-based filtering algorithms, including extended Kalman filter,
unscented Kalman filter, and particle filter, are respectively used to estimate SOC and their performances
regarding to tracking accuracy, computation time, robustness against uncertainty of initial values of SOC,
and battery degradation, are compared. To evaluate the performances of these algorithms, a new com-
bined dynamic loading profile composed of the dynamic stress test, the federal urban driving schedule
and the US06 is proposed. The comparison results showed that the unscented Kalman filter is the most
robust to different initial values of SOC, while the particle filter owns the fastest convergence ability
when an initial guess of SOC is far from a true initial SOC.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

With the increasing development of electric vehicles (EVs),
lithium-ion batteries are gradually becoming dominant in energy
storage systems due to their advantages, such as high energy and
power density, long lifespan [1]. To guarantee safe and reliable bat-
tery operation, a battery management system (BMS) is required to
monitor and control lithium-ion batteries so as to provide a longer
lifetime of a battery [2]. State of charge (SOC) estimation is one of
the main concerns in the BMS. The SOC quantifies remaining

charge of a battery at the current cycle and indicates how long
the battery will sustain before the battery is recharged [3]. It can
be regarded as a ‘‘Gas Gauge” or ‘‘Fuel Gauge” function by analogy
to a fuel tank in a car [4]. A precise automotive fuel gauge will
relieve drivers’ anxious about an unexpected fuel range. In addi-
tion, accurate estimation of SOC is strongly helpful to determine
the end of charge and discharge. And it will effectively keep a
battery operating within desired operation limits and slow down
battery failures caused by over-charging and over-discharging.
However, SOC cannot be directly measured. Even though SOC
can be estimated from some measurable parameters, such as
current and voltage, an explicit relationship is not concluded. In
other words, voltage and current can only be used to provide a
rough indication of SOC. To achieve a higher SOC estimation
accuracy, other factors in operation conditions, such as ambient
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temperature, battery voltage and temperature, charge and
discharge rate, self-discharge rate should be taken into considera-
tion [5].

Currently, existing SOC estimation algorithms can be divided
into non-model based approaches mainly including Ampere-Hour
integral, open-circuit voltage (OCV), machine learning methods
and model-based approaches. By directly accumulating battery
current over time, Ampere-Hour integral methods can give approx-
imate SOC estimation [6–8]. However, errors caused by inaccurate
initialization of SOC, low precision of current sensor, and dis-
cretization of sample time are inevitable and difficult to be reduced
because of open-loop estimation [9]. In practice, an OCV-based
method is often adopted to estimate an initial SOC via the mono-
tonic relationship between OCV and SOC [5]. Machine learning
methods, such as artificial neural networks [10], fuzzy logic [11],
and support vector machine [12], regard a battery as a black box
and they are able to model the nonlinear relationship between
inputs and outputs on the basis of large quantities of training data
available [1,13]. Because these methods lack of specifications of
lithium-ion batteries, estimation accuracy of these methods
strongly depends on quantity and quality of training data. Besides,
these methods are time-consuming.

In opposition to the aforementioned non-model based
approaches, model-based SOC estimation approaches featured by
a closed-loop are able to self-correct and overcome unexpected
disturbances. A battery dynamic behavior can be described either
by an electrochemical model [14,15] or by an equivalent circuit
model. The design of observers for SOC estimation can be con-
ducted by using Kalman filter family, sliding observer [16,17] and
H-infinity observer [18–20], etc. [21,22]. Among all the designed
observers, a Kalman filter family takes up a large percentage due
to its advantage in finding an optimal solution for a linear Gaussian
system. Variants of the Kalman filter emerge for a non-linear bat-
tery system. Extended Kalman filter (EKF) was introduced to esti-
mate SOC of a lithium-ion polymer battery pack by Plett [23–25].
Later, he implemented and tested two sigma-point Kalman filters
(SPKFs), including the unscented Kalman filter (UKF) and the cen-
tral difference Kalman filter, on a battery pack based on a fourth-
generation prototype lithium-ion polymer battery because these
two SPKFs did not require a Jacobian matrix, compared with the
EKF [26,27]. Subsequently, the methodologies to enhance the Kal-
man filter family’s performance on SOC estimation emerge, such as
dual EKF [28], adaptive EKF (AEKF) [29], iteratively EKF [30], adap-
tive UKF (AUKF) [31,32], square-root UKF [33], square-root spher-
ical UKF [34], strong tracking SPKF [35], and adaptive cubature
Kalman filter [36]. Meanwhile, some efforts have been made to
compare the performance of these model-based estimation
approaches. Sun et al. [32] compared AUKF with AEKF, EKF, and
UKF and showed the AUKF has a superior performance with a
low computational load and a better accuracy of SOC. Li et al.
[37] compared three model-based filtering algorithms, including
the Luenberger observer, EKF, and SPKF, and concluded that the
classical Luenberger observer relies mostly on the accuracy of the
battery model and is less accurate, while the SPKF provides better
SOC estimation results in the most cases. Tian et al. [38] compared
the performance of AUKF against an adaptive slide mode observer
in terms of convergence ability, tracking accuracy, and estimation
robustness and the AUKF was shown to have better tracking accu-
racy and convergence ability in the comparison results. Other sim-
ilar work can be found in [39,40].

Although the Kalman filter family yields satisfying results, it
requires the noise in the system to follow Gaussian distribution.
Particle filter (PF) is free of this constraint and it can be applied
to non-linear and non-Gaussian systems [41]. The PF has been
widely applied in object tracking and navigation, machine vision,
and automatic control, whereas it is rarely exploited until the

recent years in SOC estimation. In 2011, Gao et al. [42] used the
PF with the combined model to estimate the SOC of a lithium-
ion battery and showed the proposed method is effective and
efficient. In 2013, Schwunk et al. [43] used the PF for SOC and
state-of-health (SOH) estimation of lithium-ion batteries. Other
related works based on PF for SOC estimation of lithium-ion batter-
ies can be found in [44–46]. In our paper, to further explore its
potential application to SOC estimation, PF is investigated and is
compared with UKF and EKF.

However, several existing issues are seldom addressed in the
literature. Firstly, a battery degradation issue is seldom discussed
in SOC estimation. Often, experiments are carried out on brand
fresh batteries. Practicable capacity, as an indicator of battery
degradation, will decline due to irreversible physical/chemical
reactions during normal operation [47–49]. Thus, an aged battery
much more common-seen in reality, with a capacity loss, not only
induces to reduction of a vehicle driving range, but may results in a
large error when estimating SOC [50]. That is the motivation to
study the effect of the aging level of the battery on SOC estimation.
Secondly, SOC can only be inferred from some measurable param-
eters and thus the precise initial value of SOC is always unknown in
reality. The accuracy and performance of a SOC estimator will be
influenced by the uncertainty of initial values of SOC in two
aspects: on one hand, improper initial guesses of a certain initial
SOC may require different estimation times to track true SOC; on
the other hand, lithium-ion batteries have a relatively flat OCV
curve over the SOC, especially for lithium iron phosphate (LiFePO4)
batteries. Inferring SOC from the flat region will cause a larger error
comparing with that from other relatively steep regions. However,
in most of the works on SOC estimation, only some certain initial
values of SOC were used to validate the developed algorithms.
Therefore, it makes great sense to test robustness of the
model-based filtering algorithms in terms of uncertainty of initial
values of SOC [5]. What’s more, computation time is an important
factor to evaluation the performance of estimators as estimation of
the current state is often required to be finished before the next
measurement arrives in an online estimation case.

In this paper, we compare the performances of three popular
combined model-based filtering algorithms, including EKF, UKF,
and PF, for SOC estimation. First of all, we propose a new combined
dynamic loading profile for the simulation of real EV driving
behaviors. Taking battery degradation into consideration, we col-
lect data from a new battery and an aged battery based on the pro-
posed profile. Using data collected from the batteries, we consider
uncertainty of initial values of SOC and test robustness of the three
filtering algorithms to SOC estimation in terms of various initial
values of SOC and various initial guesses of SOC. The performances
of EKF, UKF, and PF are then compared in terms of tracking accu-
racy, convergence behavior, and computation time.

The rest of this paper is organized as follows. Section 2 intro-
duces the battery test bench and the combined dynamic loading
test. The implemented procedure and the details of algorithms
are presented in Sections 3 and 4, respectively. The experimental
results and discussions are presented in Section 5. Conclusions
are drawn at the last section.

2. Experiments

The battery test bench, which composes of a battery test system
(Arbin BT2000 tester) for loading and sampling the battery, a host
computer with Arbin MITS Pro Software for on-line experiment
control and data recording, and a computer with Matlab R2012b
Software for data analysis, is shown in Fig. 1. The cylindrical
A123 18650 battery (LiFePO4), was used in the test, and the key
specifications are shown in Table 1. Two separate test schedules
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