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a b s t r a c t

The purpose of this study is to examine thermal wave phenomena in a thin finite film subjected to non-
homogeneous boundary conditions. The CattaneoeVernotte (CeV) heat conduction model is solved
using the superposition principle in conjunction with the solution structure theorems. For comparison
purposes, the diffusion model is also solved to demonstrate the flexibility in the technique as well as to
show the differences in the results. It is recognized that the solution structure theorems are suitable for
homogeneous systems only. However, by performing a functional transformation, the original non-
homogeneous partial differential equation governing the physical problem can be cast into a new
form with homogeneous boundary conditions such that it can be solved directly with the solution
structure theorems. In this study, details of this process will be examined and explored for achieving
solutions in such systems. The methodology provides a convenient technique for the solution of the
diffusion and CeV heat conduction equations with non-homogeneous boundary conditions.

� 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Thermal energy transport in solids is conducted by electron
particles and phonon quanta. Its traveling speed should not be
greater than that of light. This implies that the impact of one
localized area subjected to a sudden change of temperature or heat
flux exposure should not be instantaneously sensed at any other
locations within the medium. Most analysis of heat transfer in
solids has been based on the macroscopic diffusion theory, or
Fourier law, and is widely accepted in the scientific and engineering
community. The empirical law of diffusive heat conduction governs
thermal energy transport in solids, stating that the rate of heat flow
in a given direction is proportional to the area normal to the di-
rection of travel and to the temperature gradient in the same di-
rection. The classical Fourier parabolic heat equation assumes that
thermal energy travels within the solid medium at a non-physical
infinite speed. This is a valid assumption for typical applications
but breaks down in situations that include low temperature con-
ditions or engineering applications such as material processing [1]
with high-power for short duration, e.g., laser welding, explosive
bonding, electrical dischargemachining, and heating and cooling of
micro-electronic elements, etc. To that end, a great deal of academic

interest since the 1950s has been devoted towards seeking a ther-
mal model that can predict a finite speed of propagation [2e6]. One
of the most popular models is the commonly known Cattaneoe
Vernotte (CeV) hyperbolic thermal model [3,4].

Thermal propagation in thin film subjected to a sudden tem-
perature change on its surfaces was investigated by Tan and Yang
[1]. The investigation was extended to study the wave nature of
heat propagation in a thin film subjected to an asymmetrical
temperature change on both sides [7]. Both studies presented
analytical expressions for the temperature and heat flux distribu-
tions and numerical results for the time history of heat transfer
behaviors using the method of separation of variables. Results
revealed that transient heat conduction traveled in awave form and
attenuated within the medium. The studies contradicted results
based on the Fourier law in macroscale heat conduction. Torii and
Yang [8] also studied the heat transfer mechanisms in a thin film
with symmetrical laser heat source impingement on its boundaries.
Temperature solutions were obtained by using MacCormack’s
predictorecorrector scheme [9]. The same problem was solved
analytically by the method of Laplace transforms by Lewandowska
and Malinowski [10]. Results have demonstrated that temperature
overshoot could occur in thin films within a short period of time
but does not appear in thicker films.

In this study, a physical problem similar to the one considered
by Tan and Yang [1,7] will be studied. A thin film subjected to
asymmetrical boundary conditions on both sides is examined. A
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non-Fourier heat conduction problem formulated using the Catta-
neoeVernotte (CeV) model with non-homogeneous boundary
conditions is solved with the superposition principle [11] in
conjunction with solution structure theorems [12]. This technique
has been applied successfully for the study of hyperbolic heat
conduction by Lam and Fong [13,14] for homogeneous problems. It
is well known that the aforementioned analytical method is not
suitable for such classes of non-homogeneous thermal problems.
However, by performing a functional transformation, the original
non-homogeneous partial differential equation governing the
physical problem can be cast into a new form such that it consists of
a homogeneous part and an additional auxiliary function. As a
result, the modified homogeneous governing equation can then be
solved with the solution structure theorems for temperatures in-
side a finite planar medium. The resulting temperature profile is
obtained in the form of a series solution. The method is relatively
simple and requires only a basic background in applied mathe-
matics. The methodology provides a simple technique for the so-
lution of the CeV heat conduction equation with non-
homogeneous boundary conditions as compared to conventional
methods, e.g., separation of variables and Laplace transforms. The
present study will demonstrate the application of the method.

The outline of the paper is as follows. Section 2 presents the
formulation of the non-homogeneous physical problem for both
the diffusion and CeV heat conduction models. General non-
homogeneous boundary and initial conditions are also presented.
Section 3 outlines the solution method. The governing equation is
recast into a homogeneous form through a transformation process
with the aid of an auxiliary function such that the resulting
modified partial differential equation can be directly solved for the
temperature field by applying the superposition method and so-
lution structure theorems. Section 4 presents the general temper-
ature solution for both the diffusion and hyperbolic models. In
Section 5 the temperature solution for a specific set of internal heat
generation, boundary and initial conditions is presented for the
physical problem under consideration. Section 6 performs the nu-
merical simulation of the temperature profiles. Results are

presented for both the diffusion and hyperbolic models. A summary
of the study can be found in Section 7.

2. Physical problem and heat conduction models

In the present study, an isotropic slab confined to the region
0 � x � 1 with uniform thickness and constant thermophysical
properties, is assumed. Initially, the slab is at temperature
T(x,0) ¼ H1ðxÞ, which is the prescribed spatial temperature distri-
bution within the solid. For time t > 0, the boundary at x ¼ 0 is
maintained at a constant temperature. The boundaryat x¼ 1 is either
kept at a constant temperature or is subjected to an incident heatflux.
In other words, the aforementioned conditions are either first type
(prescribed temperature) or second type (prescribed heat flux)
boundary conditions. Internal heat generation inside the medium is
designated as g(x,t). Temperature distributionswithin the slabwill be
obtained based on the diffusion and hyperbolic CattaneoeVernotte
(CeV) thermal models. The governing equation, boundary and initial
conditions governing the heat transfer process within the solid slab
have been presented in detail by Lam and Fong [13,14]. They are
summarized as follows by using the indicial notation for brevity.

2.1. Heat conduction models

2.1.1. Diffusion model
The parabolic Fourier law heat conduction equation specifies that

the heat flux conducted across a solid is proportional to the tem-
perature gradient taken in a direction normal to the material surface
in question. Using indicial notations, the Fourier law is given as

q* ¼ �kT*x* (1)

The energy conservation law is given by

rcpT*t* ¼ �q*x* þ g* (2)

Note that the subscripts t* and x* shown above represent the

Nomenclature

c thermal wave speed
cp specific heat
F function
f forcing function
f1, f3 boundary condition at x ¼ 0
f2, f4 boundary condition at x ¼ 1
fr referenced heat flux
g dimensionless internal heat generation
H1 dimensionless initial condition
H2 dimensionless initial temperature rate of change
k thermal conductivity
M coefficient, Eq. (9)
N coefficient, Eq. (9)
N norm
n index
q heat flux
T dimensionless temperature
t dimensionless time
u dimensionless temperature solution for the

homogeneous problem
u1 dimensionless temperature solution due to j function

contribution

u2 dimensionless temperature solution due to 4 function
contribution

u3 dimensionless temperature solution due to f function
contribution

w auxiliary function
X eigenfunction
x dimensionless slab thickness

Greek symbols
a thermal diffusivity
bn eigenvalue, Eq. (18c)
gn eigenvalue, Eq. (23d)
ε relative error
hn eigenvalue, Eq. (30d)
ln eigenvalue, Eq. (27c)
6n eigenvalue, Eq. (30d)
z dummy variable for time
x dummy variable for space
r density
sCV relaxation time
4 initial condition function
j initial temperature rate of change function

Superscript
* dimensional quantity
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