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a b s t r a c t

The problem of natural convective boundary-layer flow of a nanofluid past a vertical plate is revisited.
The model, which includes the effects of Brownian motion and thermophoresis, is revised so that the
nanofluid particle fraction on the boundary is passively rather than actively controlled. In this respect the
model is more realistic physically than that employed by previous authors.

� 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

The model for a nanaofluid including the effects of Brownian
motion and thermophoresis, introduced by Buongiorno [1], was
applied by Kuznetsov and Nield [2] to the classical problem studied
by Pohlhausen, Kuiken and Bejan [3e6], namely convective
boundary layer flow past a vertical plate. In their pioneering paper
Kuznetsov and Nield [2] employed boundary conditions on the
nanoparticle fraction analogous to those on the temperature. In this
note the problem is revisited and a boundary condition that is more
realistic physically is applied. It is no longer assumed that one can
control the value of the nanoparticle fraction at the wall, but rather
that the nanoparticle flux at the wall is zero. This change necessi-
tates a rescaling of the parameters that are involved.

2. Analysis

The following analysis closely follows that in Ref. [2] and so is
described briefly here. A two-dimensional problem is considered. A
coordinate frame in which the x-axis is aligned vertically upwards
is utilized. A vertical plate is at y ¼ 0. We assume that at y ¼ 0 the

temperature T takes the constant value Tw. The flux of the nano-
particle fraction at y ¼ 0 is taken to be zero. The ambient value of
temperature is TN and the ambient value of the nanoparticle frac-
tion is fN; the ambient values are attained at an infinite distance
from the wall.

We used the Oberbeck-Boussinesq approximation. The govern-
ing equations expressing the conservation of total mass, mo-
mentum, thermal energy, and nanoparticles are, respectively:

V$v ¼ 0; (1)

rf

�
vv
vt

þ v$Vv
�

¼ � Vpþ mV2v þ
h
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oi
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(2)

ðrcÞf
�
vT
vt

þ v$VT
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¼ kV2T þ ðrcÞp½DBVf$VT þ ðDT=TNÞVT$VT �;

(3)

vf

vt
þ v$V4 ¼ DBV

2fþ ðDT=TNÞV2T : (4)

In Eqs. (1)e(4) the field variables are the velocity v [we write
v ¼ (u,v)], the temperature T and the nanoparticle volume fraction
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f. Also, rf is the density of the base fluid and m, k and b are the
viscosity, thermal conductivity and volumetric expansion coeffi-
cient of the nanofluid, and rP is the density of the particles. We
denoted the gravitational acceleration by g. In Eqs. (3) and (4) the
coefficients DB andDT are the Brownian diffusion coefficient and the
thermophoretic diffusion coefficient, respectively, each non-
dimensionalized in terms of the ambient value of the tempera-
ture. It is being assumed the temperature does not vary much from
the ambient temperature, and so DB and DTmay each be treated as a
constant.

Eqs. (1)e(4) must be solved subject to the following boundary
conditions:

u ¼ v ¼ 0; T ¼ Tw; DB
vf

vy
þ DB

TN

vT
vy

¼ 0 at y ¼ 0; (5a,b,c)

u ¼ v ¼ 0; T/TN; f/fN as y/N: (6a,b,c)

A steady state flow is considered. Eq. (5c) is a statement that,
with thermophoresis taken into account, the normal flux of nano-
particles is zero at the boundary [7,8].

We used the Oberbeck-Boussinesq approximation. We also
made an assumption that the nanoparticle concentration is dilute.
Using a suitable choice for the reference pressure, we linearized the
momentum equation and recast Eq. (2) as follows:
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g: (7)

Based on a scale analysis, we now employ the standard
boundary-layer approximation, and express the governing equa-
tions as
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where

a ¼ k
ðrcÞf

; s ¼ ðrcÞp
ðrcÞf

: (13)

We used cross-differentiation to eliminate p from Eqs. (8) and
(9). We also introduced a stream function j defined by

u ¼ vj

vy
; v ¼ �vj

vx
: (14)

Eq. (8) is now satisfied identically.
This leaves us with the following three equations:
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Nomenclature

DB Brownian diffusion coefficient
DT thermophoretic diffusion coefficient
f rescaled nanoparticle volume fraction, defined by Eq.

(20)
g gravitational acceleration vector
k thermal conductivity
Le Lewis number, defined by Eq. (28)
Nr buoyancyeratio parameter, defined by Eq. (25)
Nb Brownian motion parameter, defined by Eq. (26)
Nt thermophoresis parameter, defined by Eq. (27)
Nu Nusselt number, defined by Eq. (31)
Nur reduced Nusselt number, Nu/Rax1/4

Pr Prandtl number, defined by Eq. (24)
p pressure
q
00

wall heat flux
Rax local Rayleigh number, defined by Eq. (18)
s dimensionless stream function, defined by Eq. (20)
T temperature
Tw temperature at the vertical plate

TN ambient temperature attained as y tends to infinity
v velocity, (u, v)
(x, y) Cartesian coordinates (x-axis is aligned vertically

upwards, plate is at y ¼ 0)

Greek symbols
a thermal diffusivity
b volumetric expansion coefficient of the fluid
h similarity variable, defined by Eq. (19)
q dimensionless temperature, defined by Eq. (20)
m dynamic viscosity of the fluid
n kinematic viscosity, m/rfN
rf fluid density
rp nanoparticle mass density
(rc)f heat capacity of the fluid
(rc)p effective heat capacity of the nanoparticle material
s parameter defined by Eq. (13), (rc)p/(rc)f
f nanoparticle volume fraction
fN ambient nanoparticle volume fraction attained as y

tends to infinity
j stream function, defined by Eq. (14)
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