

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources

Tianguang Lv*, Qian Ai¹

Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

HIGHLIGHTS

- Energy management of microgrids-based active distribution system is built.
- Expanded energy storage system is defined and applied into the energy system.
- Interactive energy game matrix describes operational interaction of energy systems.
- Technical operating performances are fully considered in the energy management.
- Impact of the large integration of renewable energy resources is considered and analyzed.

ARTICLE INFO

Article history: Received 6 June 2015 Received in revised form 26 October 2015 Accepted 31 October 2015 Available online 5 December 2015

Keywords:
Active distribution system
Energy management
Microgrids
Game matrix
Bi-level multi-objective optimization

ABSTRACT

Recently, large-scale renewable energy resources have been widely integrated into power systems. To optimize large-scale integration of these resources and improve the operation performance of the distribution system, this paper proposes a novel dynamic energy management strategy with the cooperative interaction of an energy system: a multi-grid connected microgrids (MGs)-based active distribution system (ADS). A bi-level multi-objective optimization problem of the strategy is formulated with the active distribution network (ADN) in the upper level and MGs in the lower level. The interaction can be classified into two categories: the one between MGs and the ADN and the other one among MGs. The former is described by bi-level programming; the latter is innovatively explained by an interactive energy game matrix (IEGM) defined in this paper. The concept of the expanded energy storage system is defined and applied to the IEGM for the optimal operation of ADSs. The optimal operation includes improved technical performances in terms of power quality, energy utilization, adaptability and autonomy. The optimization problem is solved with a hybrid algorithm of Rough Set Theory-Hierarchical Genetic Algorithm-NSGA-II. Case studies of an ADS with different MGs and a real system would validate the efficiency of the proposed methodology. Results show that the proposed EM strategy can accurately quantify and guide the energy interaction among MGs and that between MGs and the ADN. Moreover, those technical performances of the ADS are improved.

 $\ensuremath{\text{@}}$ 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Renewable energy resources (RERs, e.g., solar and wind) have drawn the attention of researchers since they are the solution to the future energy and environment crisis [1–3]. To make a more efficient and convenient use of these RERs, large amounts of different renewable energy plants have already been connected to power systems [4]. The Energy Internet will be built on those

infrastructures [5]. As a promising framework, multiple MGs can be connected with an ADS to integrate large-scale DERs on local conditions [6]. This framework can also improve system operation, reliability, environmental friendliness and economic benefits [7]. The ADS, which can control power flow and DERs actively, is a proper modern energy system integrating DERs into power systems [8]. As a kind of energy hubs of DGs, local loads and ESSs, MGs can directly combine different energy resources and manage them with hybrid energy systems [9], so they are proper bridges between DERs and ADSs [10–12]. However, due to the intermittency and uncertainty of RERs, large-scale integration of them has great impact on the overall system [13–15]. It is also a problem

^{*} Corresponding author. Tel.: +86 18660799876. E-mail address: ltghaoo@163.com (T. Lv).

¹ Fax: +86 021 34204584.

Nomenclature controllable DGs and SB of MG n Acronyms d_2 virtual capacity of FC and MT in other MGs RER renewable energy resource d_3 dispatchable capacity of SB in other MGs EM energy management d₄ MG microgrid 0-1 variable of d_i χį **ADS** active distribution system secondary 0-1 variable of d_i ADN active distribution network output of DG u in MG n **IEGM** interactive energy game matrix reactive output of DG u in MG n expanded energy storage system **EESS** $P_{n,t}^{\text{MGPE}}$ $Q_{n,t}^{\text{MGPE}}$ total power exchange between MG n and other MGs RST Rough Set Theory HGA Hierarchical Genetic Algorithm total reactive power exchange between MG n and other NSGA-II Non-dominated Sorting Genetic Algorithm II MGs $P_{r,n,t}^{\text{Re}}$ DG distributed generator actual output of REG r in MG n $P_{r,n,t}^{\text{CUR}}$ FC fuel cell power curtailment of REG r in MG n 0–1 variable of $P_{n,t}^{\rm DGEX}$ to determine whether $P_{n,t}^{\rm DGEX}$ is car-MT micro turbine SB storage battery PV photovoltaic generator 0–1 variable of $P_{n,t}^{SBEX}$ to determine whether $P_{n,t}^{SBEX}$ is car $y_{n,t}$ WT wind turbine ried out REG renewable energy generator $P_{h,i,t}^{\text{DGEX}}$ dispatchable capacity of DG h supporting MG n in MG i **PCC** point of common coupling $P_{i,t}^{\text{SBEX}}$ dispatchable capacity of SB supporting MG n in MG iDER distributed renewable energies secondary 0–1 variables of $P_{h,i,t}^{DGEX}$ to determine whether $a_{h,i,t}$ **EES** energy storage system $P_{h,i,t}^{DGEX}$ is carried out **EMS** energy management system $P_{h,i,t}$ is carried out secondary 0–1 variables of $P_{i,t}^{SBEX}$ to determine whether $b_{i,t}$ MGCC microgrid central controller $P_{i,t}^{SBEX}$ is carried out $E_{n,t}^T$ transition state of charge capacity of SB in MG n Sets/maximums $E_{n,t}$ final state of charge capacity of SB in MG n set of nodes in ADN I set of nodes connected to MGs in ADN L_N Parameters/constants set of nodes connected to DGs in ADN L_{DG} load at node l Τ sum of scheduling period t $Q_{l,t}^L$ Ν set of MGs in ADS reactive load at node l game set of decision variables (d_i) of single MG D θ power exchange level U_n set of types of DGs in MG n, u = 1, 2, 3, 4 and 5 denote FC, economy parameter MT, SB, PV and WT, respectively $P_{l,k,\max}$ maximum line power flow from l to kset of types of REGs in MG n, r = 1 and 2 denote PV and R_n conductance between l and k $G_{l,k}$ WT. respectively susceptance between l and k $B_{l,k}$ set/sum of types of dispatchable DGs (MT and/or FC) in H_n PCC max PCC min PDG max PDG min PDG min QPCC min maximum PCC power exchange MG n, h = 1 and 2 denote FC and MT, respectively minimum PCC power exchange set/sum of MGs connected with MG n I_n maximum output of DG connected to ADN N_1 sum of MGs including FC minimum output of DG connected to ADN N_2 sum of MGs including MT maximum reactive PCC power exchange Qmax QPCC min Qmax QDG min PDG h,n,max PDG h,n,min QDG h,n,max Matrixes minimum reactive PCC power exchange $E_{n,t}^{\text{EX}}$ IEGM of MG n maximum reactive output of DG connected to ADN $C_{n,t}^{\text{EX}}$ matrix of total cost of $E_{n,t}^{EX}$ minimum reactive output of DG connected to ADN $P_{n,t}^{\text{DGEX}}$ matrix of $a_{h,i,t}$ $P_{h,i,t}^{DGEX}$ in MG n matrix of $b_{h,i,t}$ $P_{i,t}^{SBEX}$ in MG nmaximum output of DG h in MG n $P_{n,t}^{\text{SBEX}}$ minimum output of DG h in MG nmaximum reactive output of DG h in MG n Variables $Q_{h,n,\min}^{DG}$ minimum reactive output of DG h in MG n $U_{l,t}$ voltage at node l maximum voltage at node l $U_{l,\text{max}}$ line power flow from l to k $P_{l,k,t}$ minimum voltage at node l $U_{l,\min}$ P_{t}^{LOSS} $P_{l,t}^{\text{PCC}}$ $O_{l,t}^{\text{PCC}}$ $P_{n,t}^{\text{PCC}}$ $Q_{n,t}^{\text{PCC}}$ C^{GRID} power loss of ADN sale/purchase price of grid $C_u^{\rm DG}$ PCC power exchange of MG connected to node l generation cost of DG u in MGs C^{DG} reactive PCC power exchange of MG connected to node l generation cost of DG connected to ADN PCC power exchange of MG n C_r^{RE} fine per power curtailment of REG r reactive PCC power exchange of MG n $P_{r,n,t,\max}^{\text{RE}}$ maximum output of REG r in MG n $P_{l,t}^{\text{DG}}$ output of DG connected to node l $P_{n,t}^{\text{MGL}}$ load of MG n $Q_{l,t}^{DG}$ reactive power of DG connected to node l $Q_{n,t}^{MGL}$ reactive load of MG n phase angle between l and k $\theta_{l,k,t}$ spinning reserve of ADN R_t same type *i* of decision variable of MG *n* d_i maximum capacity of SB in MG n $E_{n,\max}$ d_1 REG of MG n

 $E_{n,\min}$

minimum capacity of SB in MG n

Download English Version:

https://daneshyari.com/en/article/6684565

Download Persian Version:

https://daneshyari.com/article/6684565

<u>Daneshyari.com</u>